УТВЕРЖДЕНО приказом Федерального агентства по техническому регулированию и метрологии

от «18» октября 2021 г. № 2303

Регистрационный № 83406-21

Лист № 1 Всего листов 5

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Прибор ГШ-У

Назначение средства измерений

Прибор ГШ-У предназначен для воспроизведения сигналов синусоидальной, прямоугольной, треугольной и импульсной формы.

Описание средства измерений

Принцип действия прибора ГШ-У основан на синтезе сигналов заданной формы, их усилении по амплитуде и мощности в выходном тракте.

Конструктивно прибор ГШ-У выполнен в виде моноблока в настольном исполнении и состоит из алюминиевого металлического корпуса; импульсного источника вторичного напряжения 38 В; набора печатных плат, закреплённых на силовой металлической раме и соединённых между собой плоскими кабелями (IDC шлейф); радиатора охлаждения с усилителем; сенсорного управляющего экрана (Nextion 7"); вентилятора воздушного охлаждения; гнёзд выходных сигналов (штыревые разъёмы 4 мм) и гнезда для подключения внешнего интерфейса управления Ethernet (RJ-45).

Выбор режима работы прибора ГШ-У, включение/отключение выходного сигнала, установка параметров осуществляется оператором посредством использования графического интерфейса сенсорного резистивного экрана либо персонального компьютера (по кабелю Ethernet).

Исполнителем команд оператора является модуль управления на базе микроконтроллера STM32F7 с тактовой частотой 216 М Γ ц.

Для формирования опорной частоты выходных сигналов используется внутренний аппаратный таймер микроконтроллера (32 разряда). Для установки уровней выходных сигналов используются микросхемы ЦАП с интерфейсом SPI. Усиление уровней выходных сигналов происходит в модуле усилителя.

Формирование синусоидального и треугольного сигналов реализуется в модуле «СИНУС», а прямоугольных («МЕАНДР», «ИМПУЛЬС 10В», «ИМПУЛЬС 50В») в модуле прямоугольных сигналов.

Управление ГШ-У осуществляется с передней панели, оснащенной дисплеем.

Нанесение знака поверки на прибор ГШ-У не предусмотрено.

Заводской номер 15119001 нанесен в месте, указанном на рисунке 1.

Общий вид прибора ГШ-У, схема пломбировки от несанкционированного доступа, места нанесения заводского номера и знака утверждения типа приведены на рисунке 1.

Рисунок 1 – Общий вид средства измерений

Рисунок 2 – вид задней панели

Программное обеспечение

Программное обеспечение установлено на внутренний микропроцессор, по структуре является целостным и выполняет функции управления режимами работы.

Программное обеспечение реализовано без выделения метрологически значимой части. Влияние программного обеспечения не приводит к выходу метрологических характеристик прибора ГШ-У за пределы допускаемых значений.

Уровень защиты программного обеспечения «низкий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ПМО ГШ-У
Номер версии (идентификационный номер ПО)	25.01.2021

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 – Метрологические характеристики	<u> </u>
Наименование характеристики	Значение
1	2
Режим «МЕАНДР»	
Диапазон установки частоты выходного сигнала, Гц	от 10 до 160000
Пределы допускаемой относительной погрешности установки	
частоты выходного сигнала, %	
в диапазоне частот от 10 Гц до 100 кГц включ.	±0,2
з диапазоне частот св. 100 до 160 кГц	±0,3
Диапазон установки верхнего уровня выходного напряжения, В	от 22 до 32
Диапазон установки нижнего уровня выходного напряжения, В	от 16 до 31
Пределы допускаемой относительной погрешности установки	± 4
верхнего и нижнего уровней выходного напряжения, %	
Режим «Импульс 10В»*	
Диапазон установки уровня постоянной составляющей, В	от 23 до 30
Амплитуда выходного сигнала, В	
положительная полярность	10
отрицательная полярность	-10
Пределы допускаемой абсолютной погрешности установки амплитуды	$\pm 0,5$
выходного сигнала, В	
Пределы допускаемой абсолютной погрешности установки	±5
плительности импульса, мкс	5
Длительность фронта импульса, мкс, не более	3
Режим «Импульс 50В»**	
Амплитуда выходного сигнала, В	50
Пределы допускаемой абсолютной погрешности установки амплитуды выходного сигнала, В	±2,5
Пределы допускаемой абсолютной погрешности установки длительности импульса, мкс	±5
Длительность фронта импульса, мкс, не более	5
Режим «СИНУС»	
Диапазон установки частоты выходного сигнала, Гц	от 20 до 100000
Пределы допускаемой относительной погрешности установки частоты выходного сигнала, %	±0,5
Диапазон установки амплитуды выходного сигнала, В	от 0,5 до 5
Тределы допускаемой относительной погрешности установки	
имплитуды выходного сигнала, %	
без нагрузки	±2,5
с нагрузкой	±5

Наименование характеристики	Значение
1	2
Диапазон установки постоянной составляющей выходного сигнала, В	от 24 до 31
Пределы допускаемой относительной погрешности установки постоянной составляющей, %	±0,5
Суммарное значение постоянной и переменной составляющих, В, не более	32
* - на активной нагрузке не менее 25 Ом ** - на активной нагрузке не менее 250 Ом	

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Форма сигнала на выходе в режиме «СИНУС»	Синусоидальная,
Форма ст пала на выходе в режиме «Сттъ с//	треугольная
Параметры электрического питания:	
- напряжение переменного тока, В	220
- частота переменного тока, Гц	50
Ток потребления без нагрузки, мА, не более	300
Время установления рабочего режима, с, не более	5
Габаритные размеры (длина×ширина×высота), мм, не более	360×300×160
Масса, кг, не более	10
Рабочие условия эксплуатации:	
температура окружающей среды, °С;	от +5 до +40
относительная влажность воздуха при температуре плюс 25 °C, %;	от 45 до 80
атмосферное давление, мм рт.ст.	от 645 до 795

Знак утверждения типа

наносится на корпусе прибора ГШ-У с правой стороны от приборной планки в виде наклейки в соответствии с рисунком 1 и на титульный лист инструкции по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование, тип	Обозначение	Количество
Прибор ГШ-У	САДИ.468211.036	1 шт.
Кабель PL1193	-	1 шт.
Кабель KS-60	-	1 шт.
Инструкция по эксплуатации	САДИ.468211.036ИЭ	1 экз.
Паспорт	САДИ.468211.036ПС	1 экз.

Сведения о методиках (методах) измерений

приведены в разделе 1.6 «Описание интерфейса изделия» инструкции по эксплуатации.

Нормативные документы, устанавливающие требования к прибору ГШ-У

Приказ Росстандарта от 31.07.2018 № 1621 Об утверждении государственной поверочной схемы для средств измерений времени и частоты

Приказ Росстандарта № 3463 от 30.12.2018 Об утверждении государственной поверочной схемы для средств измерений импульсного электрического напряжения

Приказ Росстандарта № 1053 от 29.05.2018 Об утверждении государственной поверочной схемы для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от $1\cdot10^{-1}$ до $2\cdot10^9$ Гц

Изготовитель

Акционерное общество «Военно-промышленная корпорация «Научно-производственное объединение машиностроения» (сокр. АО «ВПК «НПО машиностроения»)

Адрес: ул. Гагарина, д. 33, г. Реутов, Московская область, 143966

ИНН 5012039795

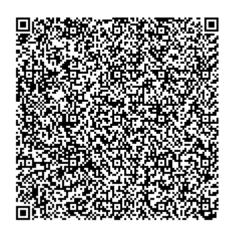
Телефон: +7 (495) 542-57-09 Web-сайт: http://www.npomash.ru

E-mail: kmo@ktrv.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области»

(ФБУ «Ростест-Москва»)


Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7(495) 544-00-00 E-mail: info@rostest.ru

Web-сайт: http://www.rostest.ru

Уникальный номер записи об аккредитации RA.RU.310639 в Реестре аккредитованных

лиц.

