

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «POCTECT – MOCKBA»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Ростест-Москва»

А.Д. Меньшиков

«10» ноября 2017 г.

Государственная система обеспечения единства измерений

КОМПЛЕКСЫ АППАРАТНО-ПРОГРАММНЫЕ «УРАГАН-ЮГ»

Методика поверки

РТ-МП-4441-441-2017

г. Москва 2017 г.

Настоящая методика поверки распространяется на комплексы аппаратно-программные «Ураган-Юг» (далее по тексту - комплексы), изготовленные ООО «НПП «МВС» г. Краснодар, и устанавливает порядок и объём их первичной и периодической поверки.

Интервал между поверками – 1 год.

Перед проведением поверки необходимо ознакомиться с указаниями, изложенными в руководстве по эксплуатации на комплексы.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки комплексов выполняют операции, указанные в таблице 1.

Таблица 1 - Операции, выполняемые при поверке

Наименование операции	Номер пункта методики	Проведение операции при поверке	
патменование операции		первич ной	периоди ческой
Внешний осмотр	6.1	да	да
Опробование	6.2	да	да
Определение метрологических характеристик	6.3	да	да
Определение абсолютной погрешности (по уровню вероятности 0,95) определения координат при работе по сигналам ГЛОНАСС (код СТ), GPS код (С/А) в частотном диапазоне L1	6.3.1	да	да
Определение абсолютной погрешности (по уровню вероятности 0,95) синхронизации внутренней шкалы времени комплекса с национальной шкалой времени Российской Федерации UTC(SU)	6.3.2	да	да
Определение погрешности измерений скорости транспортных средств (ТС)	6.3.3	да	да

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки комплексов применяются средства поверки, указанные в таблице 2.

Таблина 2 - Применяемые средства поверки

Номер пункта методики	Наименование и тип основного или вспомогательного средства поверки, требуемые технические и метрологические характеристики средства поверки				
1	2				
6.3.1	Аппаратура геодезическая спутниковая NVS-RTK - границы допускаемой абсолютной погрешности измерения координат (при доверительной вероятности 0,95) в режиме «Навигация», м: в плане ±3,0 по высоте ±3,0 - границы допускаемой абсолютной погрешности измерения координат (при доверительной вероятности 0,95) в режиме «Навигация с дифференциальными поправками» (SBAS), м: в плане ±2,0 по высоте ±2,0				

Продолжение таблицы 2

1	2
6.3.3	Частотомер универсальный CNT-90XL - пределы допускаемой относительной погрешности измерения частоты $2 \cdot 10^{-7}$
6.3.3	Дальномер лазерный Leica DISTO A3 - диапазон измерений: от 0,05 м до 100 м - пределы допускаемой абсолютной погрешности измерений не более: ±1,5 мм расстояний менее 30 м ±10 мм расстояний более 30 м
6.3.2	Приёмник временной синхронизации NV08C-CSM-N24M - пределы допускаемой абсолютной погрешности привязки метки времени (1PPS), относительно шкалы времени UTC(SU) ±100 нс

- 2.2 Применяемые при поверке средства измерений должны быть поверены и иметь действующие свидетельства о поверке.
- 2.3 Допускается применение иных средств измерений, обеспечивающих определение метрологических характеристик поверяемых комплексов с требуемой точностью.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 При проведении поверки комплексов необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей», «Правила техники безопасности при эксплуатации электроустановок потребителей» и правила охраны труда.
- 3.2 К проведению поверки допускаются лица, прошедшие инструктаж по технике безопасности на рабочем месте, освоившие работу с комплексами и применяемыми средствами поверки и изучившие настоящую методику.
- 3.3 На рабочем месте должны быть приняты меры по обеспечению защиты от воздействия статического электричества.
- 3.4 Для исключения сбоев в работе, измерения необходимо производить при отсутствии резких перепадов напряжения питания сети, вызываемых включением и выключением мощных потребителей электроэнергии и мощных импульсных помех.

4 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны быть соблюдены следующие условия:

 температура окружающего воздуха, °С 	$20 \pm 5;$
– относительная влажность воздуха, %	65 ± 15 ;
– атмосферное давление, кПа (мм рт.ст.)	$100 \pm 4 \ (750 \pm 30);$
 напряжение питающей сети, В 	$220 \pm 22;$
 частота питающей сети, Гц 	$50 \pm 0,5.$

5 ПОДГОТОВКА К ПОВЕРКЕ

Подготовку комплексов и оборудования, перечисленного в таблице 2, проводят в соответствии с требованиями, изложенными в соответствующих эксплуатационных документах.

Убедиться в выполнении условий проведения поверки.

Выдержать средства поверки во включенном состоянии в течение времени, указанного в их руководствах по эксплуатации.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре убедиться в:

- комплектности комплексов в соответствии с «Руководством по эксплуатации»;
- отсутствии механических повреждений, влияющих на работоспособность комплексов:
- чистоте гнезд, разъемов и клемм;
- исправности соединительных проводов и кабелей;
- целостности лакокрасочного покрытия и четкости маркировки;
- отсутствии внутри корпуса незакрепленных предметов.

Результаты внешнего осмотра считать положительными, если комплекс удовлетворяет вышеперечисленным требованиям, комплектность полная.

Комплексы, имеющие дефекты, к поверке не допускаются.

6.2 Опробование

Провести опробование работы комплекса для оценки его исправности.

Опробование проводится на полностью смонтированном комплексе на пункте дорожного контроля в месте, обеспечивающем устойчивый прием сигналов навигационных спутников.

Проверки и измерения параметров комплекса проводят после включения питания и загрузки программного обеспечения, но не ранее, чем через 15 минут.

Для проведения процедуры опробования комплекса, его необходимо подключить при помощи штатного внешнего блока питания (БП) к сети.

При необходимости подключить комплекс к персональному компьютеру (ПК) и выполнить операции по запуску программного обеспечения «Ураган-Юг», согласно разделу «Использование комплекса» Руководства по эксплуатации 01.02010.001.00.000.РЭ.

- 6.2.1 Проверить идентификационные данные ПО «RecognitionNumbersSDK3.dll», номер версии должен быть не ниже 16.19.39.
- 6.2.2 Убедиться что после установления связи со спутниками на мониторе комплекса имеются в наличии сообщения:
 - значения координат;
 - текущее время по шкале UTC(SU).
- 6.2.3 Проследовать на транспортном средстве (TC) через зону контроля комплекса и убедится, что комплекс фиксирует TC и на монитор комплекса выводится результат:
 - изображение зафиксированного ТС;
 - значение скорости ТС;
 - распознанный государственный регистрационный знак (ГРЗ).

Результат поверки считать положительным, если идентификационные данные ПО соответствуют данным, приведенным в описании типа средства измерений, и обеспечивается выполнение требований, перечисленных в пунктах 6.2.2 и 6.2.3.

При получении отрицательных результатов дальнейшее проведение поверки прекращают.

6.3 Определение метрологических характеристик

6.3.1 Определение абсолютной погрешности (по уровню вероятности 0,95) определения координат при работе по сигналам ГЛОНАСС (код СТ), GPS код (С/А) в частотном диапазоне L1

Для определения абсолютной погрешности (по уровню вероятности 0,95) определения координат при работе по сигналам ГЛОНАСС (код СТ), GPS код (C/A) в частотном диапазоне L1, необходимо:

Расположить комплекс и антенну аппаратуры геодезической спутниковой NVS-RTK в одной точке и в месте, обеспечивающем устойчивый приём сигналов навигационных спутников.

Включить и прогреть (не менее 30 мин) все приборы.

При помощи программы «Storegis» (версия не ниже 9.0), установленной на ПК, получить навигационное решение в виде статуса решения – 3D (рис. 1) с истинными значениями координат комплекса.

Рисунок 1. Диалоговое окно программы «Storegis»

Всего листов 11

(2)

Зафиксировать не менее 10 фото изображений, полученных с видеокамеры комплекса с интервалом не менее одной минуты.

Записать с полученных фото изображений значения координат, определённых навигационным модулем комплекса.

По результатам измерений определить систематическую составляющую погрешности определения координат в плане (широты и долготы) по формулам (1), (2), например, для координаты В (широты):

$$\Delta_{B(j)} = B(j) - B_{\text{MCT}}$$

$$d_B = \frac{1}{N} \cdot \sum_{j=1}^{N} \Delta_{B(j)}$$
(1)

где Вист – истинное значение координаты В, угл. с;

В(j) – значение координаты В в j-й момент времени, угл. с;

N – количество измерений.

Аналогичным образом определить систематическую составляющую погрешности определения координаты L (долготы).

Определить среднее квадратическое отклонение (СКО) случайной составляющей погрешности определения координат по формуле (3).

Например, для координаты В (широты):

$$\sigma_{B} = \sqrt{\frac{\sum_{j=1}^{N} (\Delta_{B(j)} - d_{B})^{2}}{N - 1}}$$
(3)

Аналогичным образом определить СКО случайной составляющей погрешности определения координаты L (долготы).

Перевести значения погрешностей определения координат в плане (широты и долготы) из угловых секунд в метры по формулам (4) - (5):

- для широты:

$$\Delta_{\rm B}({\rm M}) = {\rm arc} 1'' \frac{{\rm a} \cdot (1-{\rm e}^2)}{\sqrt{(1-{\rm e}^2 \cdot {\rm sin}^2 {\rm B})^3}} \cdot \Delta_{\rm B}({\rm yrg.~c})$$
 (4)

- для долготы:

$$\Delta_{L}(M) = \operatorname{arc1}'' \frac{\operatorname{a} \cdot (1 - \operatorname{e}^{2}) \cdot \cos B}{\sqrt{(1 - \operatorname{e}^{2} \cdot \sin^{2} B)^{3}}} \cdot \Delta_{L}(yr\pi. c)$$
(5)

где

а – большая полуось эллипсоида, м;

е - первый эксцентриситет эллипсоида;

1'' = 0.000004848136811095359933 радиан (arc 1'').

Для приближенных расчетов можно применять следующие формулы:

$$\Delta_{\rm B}$$
 (м)=30,92· Δ B (угл. c); $\Delta_{\rm L}$ (м) = 30,92· Δ L (угл. c)·cosB.

Определить погрешность (по уровню вероятности 0,95) определения координат в плане по формулам (6)-(7):

$$\Pi_{B} = \pm (|d_{B}| + 2 \cdot \sigma_{B})$$

$$\Pi_{L} = \pm (|d_{L}| + 2 \cdot \sigma_{L})$$
(6)
(7)

Результат поверки считать положительным, если абсолютная погрешность (по уровню вероятности 0,95) определения координат при работе по сигналам ГЛОНАСС (код CT), GPS код (C/A) в частотном диапазоне L1, не превышает ± 7 м

6.3.2 Определение абсолютной погрешности (по уровню вероятности 0,95) синхронизации внутренней шкалы времени комплекса с национальной шкалой времени Российской Федерации UTC(SU)

Для определения абсолютной погрешности (по уровню вероятности 0,95) синхронизации внутренней шкалы времени комплекса с национальной шкалой времени Российской Федерации UTC(SU) необходимо:

Расположить антенну приёмника временной синхронизации NV08C-CSM-N24M в непосредственной близости с комплексом в месте, обеспечивающем устойчивый приём сигналов навигационных спутников.

При помощи программы «Синхронизация времени», установленной на ПК, выполнить синхронизацию системного времени ПК со временем UTC(SU), получаемого с приёмника временной синхронизации NV08C-CSM-N24M.

Монитор ПК настроить на выдачу показаний времени UTC(SU) с разрядностью не менее 0.1 с.

Получить не менее 10 фото изображений монитора ПК видеокамерой комплекса с интервалом не менее одной минуты.

Записать с фото изображений индицируемое время и время, наложенное на изображение комплексом.

Определить систематическую составляющую погрешности по формулам (8) и (9):

$$\Delta_{t(j)} = t(j) - t_{\text{действ}}$$

$$d_t = \frac{1}{10} \cdot \sum_{j=1}^{10} \Delta_{t(j)}$$
(8)

где $\mathbf{t}_{\text{действ}}$ — действительное значение национальной шкалы времени Российской Федерации UTC(SU), c;

t(j) — измеренное значение внутренней шкалы времени комплекса в j-й момент времени, с.

Определить среднее квадратическое отклонение (СКО) случайной составляющей погрешности синхронизации внутренней шкалы времени комплекса с национальной шкалой времени Российской Федерации UTC(SU) по формуле (10):

$$\sigma_{t} = \sqrt{\frac{\sum_{j=1}^{10} \left(\Delta_{t(j)} - \mathbf{d}_{t}\right)^{2}}{9}}$$

$$(10)$$

Определить погрешность синхронизации внутренней шкалы времени комплекса с национальной шкалой времени Российской Федерации UTC(SU) по формуле (11):

$$\Pi_{t} = \pm (|\mathbf{d}_{t}| + 2 \cdot \sigma_{t})$$

Результат поверки считать положительным, если значения абсолютной погрешности (по уровню вероятности 0.95) синхронизации внутренней шкалы времени комплекса с национальной шкалой времени Российской Федерации UTC(SU) для поверяемого комплекса не превышают значения ± 2 с.

6.3.3 Определение погрешности измерений скорости транспортных средств (ТС)

Определение погрешности измерений скорости ТС производить после выполнения обслуживающим персоналом калибровочных работ, изложенных в эксплуатационном документе: «Аппаратно-программный комплекс «Ураган-Юг». Проведение калибровки. Инструкции эксплуатационные специальные. 01.02010.001.00.000 ИС»

При определении погрешности измерений скорости TC производится определение погрешности измерений скорости по видеокадрам, как сумма погрешностей измерений межкадровых интервалов и погрешности измерений пройденного пути TC, определённых независимо и последовательно.

6.3.3.1 Определение погрешности измерений межкадровых интервалов

Для определения погрешности измерений межкадровых интервалов, необходимо:

- подключить частотомер CNT-90XL к видеодатчику комплекса;
- включить частотомер.

Установить частотомер в режим измерения периода по входу «В». Установить параметры вывода результатов измерений в миллисекундах. Регулируя чувствительность на входе «В» частотомера, добиться устойчивого измерения периода следования кадровых синхроимпульсов;

- произвести пять измерений периода следования видеокадров Тизм. в течении не менее 100 с.

Для каждого измеренного значения периода рассчитать значение абсолютной погрешности Δ_T и значение относительной погрешности δ_T

$$\Delta_{\mathbf{T}} = \left| \mathbf{T}_{\text{Действ}} - \mathbf{T}_{\text{ИЗМ}} \right|$$

$$\delta_{\mathbf{T}} = \frac{\Delta_{\mathbf{T}}}{\mathbf{T}_{\text{Действ}}} \cdot \mathbf{100\%}$$
(12)

где Тдейств – действительное значение периода следования видеокадров (40 мс)

- из полученных пяти значений выбрать и зафиксировать максимальное значение абсолютной погрешности периода Δ_T и соответствующее ему значение относительной погрешности δ_T

6.3.3.2 Определение погрешности измерений пройденного пути ТС

Для определения погрешности измерения пройденного пути ТС, необходимо:

- открыть в ПО комплекса окно «Поверка»;

Рисунок 2.

- по видеоизображению проверяемого комплекса устанавливаем тестовый автомобиль в верхнюю позицию кадра (рисунок 2).
- Измерить лазерным дальномером расстояние от нижней области кадра до центра государственного регистрационного знака (ГРЗ).

В программе нажать кнопку «Старт».

ПО комплекса начнет измерение пройденного пути в кадре.

Переместить TC так, чтобы его ГРЗ стал располагаться в нижней части видеокадра, затем зафиксировать TC неподвижно.

После нажать кнопку «Стоп». ПО комплекса произведет расчет пройденного пути, значение будет отображено в поле «Расстояние, измеренное комплексом»:

Рисунок 3.

- Произвести измерение расстояния дальномером до пластины ГРЗ на ТС.

Полученный путь (разность расстояний) внести в ПО комплекса в поле «Расстояние, измеренное оператором».

В окне программы будет отображено рассчитанное значение относительной и абсолютной погрешности для данного измерения:

Рисунок 4.

Если погрешность вышла за пределы допустимого $(\pm 2\%)$, то нужно нажать кнопку «Удалить» и выполнить измерение заново.

Повторить измерения пути три раза, чтобы таблица была заполнена результатами трех измерений.

Из трех полученных значений зафиксировать среднее значение относительной погрешности измерения пройденного пути δ_S .



Рисунок 5.

Погрешность измерений скорости TC по видеокадрам, определяется как сумма погрешностей измерения межкадровых интервалов и погрешности измерений пройденного пути TC, определённых независимо и последовательно.

Рассчитать относительную погрешность измерений скорости TC для данного комплекса, как сумму максимальных относительных погрешностей измерений периода и пройденного пути:

$$\delta_{V} = (|\delta_{T}| + |\delta_{S}|) \tag{14}$$

Всего листов 11

Рассчитать значение абсолютной погрешности измерений скорости движения ТС по формуле:

$$\Delta_V = \frac{(\delta_{\rm V} \times {\rm V}_{\rm max})}{100\%}$$

(15)

Vmax — максимальная скорость движения TC, фиксируемая комплексом. где

Результат поверки для комплекса считать положительным, если абсолютная погрешность измерений скорости TC в зоне контроля, не превышает ±2 км/ч в диапазоне от 0 до 100 км/ч включительно, а относительная погрешность измерений скорости ТС в диапазоне свыше 100 км/ч до 255 км/ч, не превышает $\pm 2\%$.

Выполнить действия пункта методики 6.3.3 для каждого видеодатчика (в зависимости от комплектации комплекса).

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 При положительных результатах поверки выдается свидетельство о поверке в соответствии с приказом Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015. Знак поверки наносится на свидетельство о поверке.
- 7.2 При отрицательных результатах поверки оформляют извещение о непригодности установленного образца. Результаты предыдущей поверки аннулируются (аннулируется свидетельство о поверке).

Врио начальника лаборатории № 441

Заместитель начальника лаборатории № 441 ФБУ «Ростест-Москва»

С.В. Подколзин

Н.В. Голышак