УТВЕРЖДАЮ

Первый заместитель генерального директора – заместитель по научной работе ФГУП «Вилиф ГРИ»

желе о месле о месле

Преобразователи термоэлектрические кабельные КТХА, КТХК, КТНН, КТЖК, КТПП, КТХА Ex, КТХК Ex, КТНН Ex, КТЖК Ex

Методика поверки

651-17-025

1 Введение

- 1.1 Настоящая методика поверки устанавливает методы и средства первичной и периодических поверок преобразователей термоэлектрических кабельных КТХА, КТХК, КТНН, КТЖК, КТПП, КТХА Ех, КТХК Ех, КТНН Ех, КТЖК Ех (далее КТ), изготавливаемых ООО «НПО Спутник», г. Красноярск.
- 1.2 Поверка преобразователей термоэлектрических кабельных КТХА, КТХК, КТНН, КТЖК, КТПП, КТХА Ех, КТХК Ех, КТНН Ех, КТЖК Ех без измерительных преобразователей с длиной монтажной части более 250 мм осуществляется по ГОСТ 8.338-2002 «ГСИ. Преобразователи термоэлектрические. Методика поверки».
- 1.3 Поверка преобразователей термоэлектрических кабельных КТХА, КТХК, КТНН, КТЖК, КТПП, КТХА Ех, КТХК Ех, КТНН Ех, КТЖК Ех без измерительных преобразователей с длиной монтажной части менее 250 мм осуществляется по документу МИ 3090-2007 «Рекомендация. ГСИ. Преобразователи термоэлектрические с длиной погружаемой части менее 250 мм. Методика поверки»
- 1.4 Интервал между поверками в зависимости от условий эксплуатации:

1 год для КТХА класса допуска 1 с диапазоном измерений температуры до 600 °C; для КТХА класса допуска 2 с диапазоном измерений температуры св. 600 до 1100°C; для КТХК с диапазоном измерений температуры св. 400 °C до 600°C, для КТЖК класса допуска 1 с диапазоном измерений температуры до 400 °C; для КТЖК класса допуска 2 с диапазоном измерений температуры св. 400 до 750 °C, для КТНН класса допуска 1 с диапазоном измерений температуры до 800 °C, для КТНН класса допуска 2 с диапазоном измерений температуры до 800 °C, для КТНН класса допуска 2 с диапазоном измерений температуры св. 800 до 1100 °C, для КТПП с диапазоном измерений температуры св. 800 до 1100 °C;

3 года для КТХА класса допуска 2 с диапазоном измерений температуры до 600 °C, для КТХК с диапазоном измерений температуры до 400 °C, для КТЖК класса допуска 2 с диапазоном измерений температуры до 400 °C, для КТНН класса допуска 2 с диапазоном измерений температуры до 800 °C;

8 месяцев для КТХА класса допуска 1 с диапазоном измерений температуры св. 600 до 1100 °C, для КТЖК класса допуска 1 с диапазоном измерений температуры св. 400 до 750 °C, для КТНН класса допуска 1 с диапазоном измерений температуры св. 800 до 1100 °C, для КТПП с диапазоном измерений температуры св. 800 до 1100 °C.

2 Операции поверки

2.1 При проведении поверки КТ должны быть выполнены операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта методики поверки 8.1	Обязательность проведения операций при	
операции		первичной поверке	периодической поверке
1 Внешний осмотр		да	да
2 Определение метрологических характеристик КТ	8.2	W 4-0	

Наименование операции	Номер пункта	Обязательность проведения операций при	
таписнование операции	методики поверки	первичной поверке	периодической поверке
 Проверка электрического сопротивления изоляции 	8.2.1	да	да
2.2 Определение рабочего диапазона КТ	8.2.2	да	да
2.3 Определение приведенной погрешности измерений температуры	8.2.3	да	да

3 Средства поверки

3.1 При проведении поверки должны применяться основные и вспомогательные средства поверки, приведенные в таблице 2.

Таблица 2

Номер пункта методики поверки	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки		
8.2.1	Мультиметр цифровой АМ-1083, регистрационный номер 47619-11 в Федеральном информационном фонде		
8.2.2, 8.2.3	Термометр сопротивления эталонный ЭТС-25, тип A, регистрационный номер 19484-09 в Федеральном информационном фонде		
8.2.2, 8.2.3	Термометр сопротивления эталонный ЭТС-25, тип В, регистрационный номер 19484-09 в Федеральном информационном фонде		
8.2.2, 8.2.3	Преобразователь термоэлектрический эталонный, регистрационный номер 19254-10 в Федеральном информационном фонде		
8.2.2, 8.2.3	Термостат переливной прецизионный ТПП-1.0, регистрационный номер 33744-07 в Федеральном информационном фонде		
8.2.2, 8.2.3	Термостат переливной прецизионный ТПП-1.3, регистрационный номер 33744-07 в Федеральном информационном фонде		
8.2.2, 8.2.3	Калибратор температуры эталонный КТ-650H с внешним эталонным термометром, регистрационный номер 53005-13 в Федеральном информационном фонде		
8.2.2, 8.2.3	Измеритель температуры многоканальный прецизионный МИТ8.15, регистрационный номер 19736-11 в Федеральном информационном фонде		
8.2.2, 8.2.3	Система поверки термопреобразователей автоматизированная АСПТ, регистрационный номер 19973-06 в Федеральном информационном фонде		
8.2.2, 8.2.3	Вольтметр цифровой универсальный В7-78/1, регистрационный номер 52147-12 в Федеральном информационном фонде		
8.2.2, 8.2.3	Измеритель температуры и влажности ИТВ 1522D, регистрационный номер 20857-07 в Федеральном информационном фонде		

3.2 При поверке допускается применять другие средства измерений, обеспечивающие определение метрологических характеристик КТ с требуемой точностью. Все средства и оборудование, используемые при поверке, должны иметь действующие свидетельства о поверке и быть аттестованы.

4 Требования к квалификации поверителей

4.1 К проведению поверки допускаются лица, имеющие квалификацию инженера, ознакомленные с эксплуатационными документами на КТ и средства измерений, руководствующиеся «Правилами техники безопасности при эксплуатации электроустановок» и аттестованные в качестве поверителей.

5 Требования безопасности

5.1 При подготовке и проведении поверки необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей», утвержденных Гостехнадзором.

6 Условия поверки

- 6.1 При проведении поверки должны быть соблюдены следующие условия: температура окружающего воздуха, °C от 15 до 35; относительная влажность окружающего воздуха, %, от 45 до 75; атмосферное давление, кПа; от 86 до 106.
- 6.2 Операции, производимые со средствами поверки и с поверяемыми КТ должны соответствовать указаниям, приведенным в эксплуатационной документации.

7 Подготовка к поверке

- 7.1 Средства поверки и вспомогательное оборудование, применяемые при поверке, должны быть подготовлены к работе в соответствии с эксплуатационной документацией.
- 7.2 Проверить соответствие условий поверки требованиям раздела 6.

8 Проведение поверки

- 8.1 Внешний осмотр
- 8.1.1 Комплектность, упаковка и маркировка КТ должны соответствовать требованиям паспорта.
 Корпус не должен иметь механических повреждений и дефектов.
- 8.1.2 КТ, не удовлетворяющие требованиям, изложенным выше, бракуют и дальнейшим операциям поверки не подвергают.
- 8.2 Определение метрологических характеристик КТ
- 8.2.1 Проверка электрического сопротивления изоляции проводить при комнатной температуре. Подать измерительное напряжение между соединенными между собой выводами и защитным чехлом КТ. Провести измерение с прямой и обратной полярностью тока и зафиксировать минимальное значение сопротивления. Результаты поверки считать положительными, если измеренное значение сопротивления изоляции не меньше 100 МОм.

- 8.2.2 Определение рабочего диапазона измерений температуры проводить одновременно с определением приведенной погрешности по п. 8.2.3.
 Результаты поверки считать положительными, если в нормированном для конкретного КТ диапазоне измерений температуры значения погрешности измерений температуры удовлетворяют условиям, приведенным в п. 8.2.3.
- 8.2.3 Определение приведенной погрешности измерений температуры КТ с ИП Испытания проводить для четырех значений температуры: 0 °C; температура верхнего предела измерений; если нижний предел измерений меньше 0 °C, то в качестве 3-ей и 4-ой точек измерения принимается температура нижнего предела измерений и половина верхнего предела измерений, если нижний предел измерений равен 0 °C, то в качестве 3-ей и 4-ой точек измерения принимаются точки, равноотстоящие от 0 °C и верх-него предела измерений.

В качестве эталонных средств измерений использовать термометр сопротивления платиновый эталонный ЭТС-25 и преобразователь термоэлектрический эталонный ТППО-1250. Эталонные средства использовать в соответствии с их рабочим диапазоном. В качестве средств, воспроизводящих температурные состояния, использовать:

- термостаты, обеспечивающие диапазоны воспроизводимых температур от минус 70 до плюс 300 °C,
- калибратор температуры «ЭЛЕМЕР КТ-650Н» обеспечивающие диапазоны воспроизводимых температур от 50 до 650 °C.
- калибратор температуры КТ-3, обеспечивающий диапазон воспроизводимых температур от 400 до 1100 °C.

Температуру плавления льда воспроизводить в сосуде Дьюара с водо-ледяной смесью и металлическим блоком сравнения для размещения испытуемого КТ с ИП и эталонного СИ. Сосуд Дьюара заполнить смесью мелкодробленого льда и охлажденной воды. Лед уплотнить во всей массе так, чтобы в смеси льда и воды не было пузырей воздуха. Избыток воды следует слить.

Измерения температуры с помощью испытываемого КТ с ИП и эталонных СИ производить при достижении в термостатах (калибраторах) стационарного состояния и в момент минимального дрейфа температуры, не превышающего $0,1 \cdot \Delta$ /мин, где Δ – выраженный в градусах допуск для испытываемого КТ.

При проведении испытаний необходимо обеспечить минимально необходимую величину погружения $L_{\text{мин}}$ эталонного СИ и испытуемого КТ с ИП. Под $L_{\text{мин}}$ понимается глубина погружения такая, что при дальнейшем погружении показания эталонного СИ и испытываемого КТ изменяются не более чем на 0.02~°C.

Выходной ток КТ с ИП измерять с помощью вольтметра В7/78-1

Значение температуры t_x , измеренное КТ с ИП, определить по формуле (2):

$$t_x = t_{min} + (t_{max} - t_{min}) \cdot (i_x - i_{min}) / \Delta_i \qquad , \tag{2}$$

где t_{min} , t_{max} - минимальное и максимальное значения температуры рабочего диапазона КТ, °C;

 i_{min} = 4 мА - минимальное значение выходного тока;

іх - значение выходного тока КТ, мА;

 $\Delta_{\rm i}$ = 16 мА - диапазон изменения выходного тока КТ;

Определить разность показаний КТ с ИП и показаний эталонного термометра Δt по формуле (3):

$$\Delta t = |t_x - t_0|,$$

Результаты испытаний считать положительными, если Δt не превосходит значения Δ , вычисленного по формуле (4):

$$\Delta = 2 \cdot \sqrt{\frac{1}{3} \cdot \Delta_{\text{KJ}}^2 + \frac{1}{3} \cdot \left(\frac{\gamma(t_{max} - t_{min})}{100}\right)^2}, \tag{4}$$

где $\Delta_{\mbox{\scriptsize KI}}$ – предел допускаемого отклонения от HCX для соответствующего класса KT без ИП;

ү – предел допускаемой погрешности ИП из графы 4 таблицы 3

Таблица 3

Обозначение	Выходной сигнал	Тип ИП	Пределы допускаемой приведённой погрешности*,	
1	2	3	4	
КТ хх У	от 4 до 20 мА	НПТ	±0,5	

Оформление результатов поверки

- Положительные результаты поверки оформляются выдачей свидетельства о поверке 9.1 установленной формы.
- В случае отрицательных результатов поверки КТ не допускается к применению, оттиск 9.2 поверительного клейма гасится, свидетельство о поверке аннулируется, владельцу выписывается извещение о непригодности установленной формы или делается соответствующая запись в эксплуатационной документации.

Начальник лаборатории 310 ФГУП «ВНИИФТРИ»

Научный сотрудник НИО-3 ФГУП «ВНИИФТРИ»

С.М. Осадчий