Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева» ФГУП «ВНИИМ им. Д.И.Менделеева»

УТВЕРЖДАЮ
И.о./директора ФГУП
ВНИИМ им. Д.И.Менделеева»
А.Н. Пронин
«12» февраля 2018 г.

Государственная система обеспечения единства измерений

КОМПЛЕКСЫ АВТОМАТИЗИРОВАННЫЕ ГИДРОЛОГИЧЕСКИЕ (ГИДРОМЕТЕОРОЛОГИЧЕСКИЕ) АГК «ГИДРОМЕТРИКА Т-7»

МЕТОДИКА ПОВЕРКИ

MII 2551-0191-2018

Руководитель лаборатории ФГУП «ВНИИМ им.Д.И.Менделеева»

В.П.Ковальков

Инженер 2 кат. ФГУП «ВНИИМ им.Д.И.Менделеева»

П.К.Сергеев

г. Санкт-Петербург 2018 г. Настоящая методика поверки распространяется на Комплексы автоматизированные гидрологические (гидрометеорологические) АГК «Гидрометрика Т-7» (далее – комплексы АГК) предназначенные для автоматических измерений уровня и температуры воды, количества атмосферных осадков и устанавливает методы и средства их первичной и периодической поверки.

Интервал между поверками 3 года.

1 Операции поверки

Таблица 1

TT	Номер	Операции	
Наименование операции	пункта МП		е при поверке
		Первичной	Периодической
Внешний осмотр	6.1	+	+
Опробование	6.2	+	+
Определение метрологических характеристик		+	+
с демонтажем:		6.3	6.3
-температуры	6.3.1		
-количества осадков с осадкомерами челноч-	6.3.2		
ного типа			
-количества осадков с осадкомерами весового	6.3.3		
типа			
-уровня воды для уровнемера гидростатиче-	6.3.4		
ского типа			;
Определение метрологических характеристик			
в условиях эксплуатации:			
-температуры	6.4.1		()
-количества осадков	6.4.2	_	6.4
-уровня водного потока для уровнемера гид-	6.4.3		
ростатического типа	(5		
Подтверждение соответствия ПО	6.5	+	+

1.1 При отрицательных результатах одной из операций поверка прекращается.

2 Средства поверки и вспомогательное оборудование

Таблица 2 – Средства поверки и вспомогательное оборудование

	могательное оборудован	1110	
Наименование средства поверки и	Метрологические характеристики		
вспомогательного оборудования	Диапазон измерений	Погрешность, класс	
Цилиндр «Klin»	номинальная вмести-	± 1 мл	
	мость 100 мл	± 1 MJI	
Термостат жидкостной серии 7000,	от минус 10 °C до	предел допускаемой погрешности	
модификации 7012	110°С	воспроизведения заданной темпера-	
		туры ±0,005 °C	
Гири	20 г, 40 г, 100 г, 1 кг,	класс точности F2 по ГОСТ OIML R	
•	5 кг, 10 кг, 15 кг, 30 кг	111-1-2009	
Калибратор давления СРС8000	от0 до 0,2МПа	± 0,01%	
Штангенциркуль ЩЦ	от 0 до 250 мм	± 0,1 mm	
Термометр сопротивления плати-	от минус 260 до 200 °C	Максимальная доверительная по-	
новый вибропрочный ПТСВ-2К-3*		грешность при доверительной веро-	
		ятности 0,95 не более 0,05 °C	
Преобразователь сигналов ТС и ТП	от минус 200 до 600 °C	±0,01 °C	
прецизионный Теркон*			

Рейка водомерная переносная с ус-	от 40 до 1000 мм	± 1 мм	
покоителем ГР-23М-01*			
ПК типа ноутбук с ПО «Нурег-			
Terminal»	_	_	
Примечание:			
* используются при нецелесообразности демонтажа при периодической поверке			

- 2.1 Средства поверки должны иметь действующие свидетельства о поверке.
- 2.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.
- 2.3 Допускается проведение периодической поверки отдельных автономных блоков, с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.
 2.4 Допускается проведение периодической поверки в ограниченных диапазонах измерений, с обязательным указанием в свидетельстве о поверке данной информации.

3 Требования безопасности и требования к квалификации поверителя.

- 3.1 К проведению поверки допускаются лица, прошедшие специальное обучение и имеющие право на проведение поверки, изучившие настоящую методику и эксплуатационную документацию (далее ЭД), прилагаемую к комплексам АГК.

 3.2 При проведении поверки должны соблюдаться:

 -требования безопасности по ГОСТ 12.3.019-80, ГОСТ 12.2.007.0-75;

 -требования безопасности, изложенные в эксплуатационной документации;

4 Условия поверки

При поверке должны быть соблюдены следующие условия: -температура воздуха, °С от 15

-относительная влажность воздуха, %

-атмосферное давление, гПа от 860 до 1060

При проведении поверки согласно пункту 6.4 данной методики должны быть соблюдены условия эксплуатации комплексов АГК.

от 15 до 35;

от 25 до 75;

5 Подготовка к поверке

- Перед проведением поверки должны быть выполнены следующие подготовительные работы: 5.1 Проверка комплектности комплекса АГК 5.2 Проверка электропитания комплекса АГК. 5.3 Подготовка к работе и включение преобразователей и центрального устройства согласно ЭД (перед началом проведения поверки преобразователи и центральное устройство должны работать не менее 20 минут).
 - 5.4 Подготовка к работе средств поверки и вспомогательного оборудования согласно ЭД.

6 Проведение поверки

6.1 Внешний осмотр.

При проведении внешнего осмотра должно быть установлено соответствие комплекса АГК следующим требованиям:

- 6.1.1 Центральное устройство комплекса АГК, преобразователи, вспомогательное и дополнительное оборудование не должны иметь механических повреждений или иных дефектов, влияющих на качество их работы.
- 6.1.2 Соединения в разъемах питания центрального устройства, преобразователей, вспомогательного и дополнительного оборудования должны быть надежными.
 - 6.1.3 Маркировка комплекса АГК должна быть целой, четкой, хорошо читаемой.

6.2.Опробование

Опробование комплекса АГК должно осуществляться в следующем порядке:

- 6.2.1 Включите центральное устройство и проверьте его работоспособность.
- 6.2.2 Проведите проверку работоспособности преобразователей, вспомогательного и дополнительного оборудования комплекса АГК.
- 6.2.3 Контрольная индикация должна указывать на работоспособность центрального устройства, преобразователей, вспомогательного и дополнительного оборудования.
 - 6.3. Определение метрологических характеристик комплексов АГК.
- 6.3.1Определение метрологических характеристик комплексов АГК при измерении температуры выполняется в следующем порядке:
 - 6.3.1.1 Поместите в термостат датчик из состава комплекса АГК.
- 6.3.1.2 Произведите технологический прогон датчика при температуре 20 °C в течении $10\,\mathrm{Muh}$.
- 6.3.1.33адавайте значения температуры $t_{\text{эт}}$ в термостате в пяти точках равномерно распределенных по диапазону измерений (первая и последняя точки должны соответствовать значениям верхнего и нижнего пределов диапазона измерений).
 - 6.3.1.4 Фиксируйте показания датчика t_{изм} комплексов АГК.
- 6.3.1.5Вычислите абсолютную погрешность измерений температуры воды Δt по формуле:

$$\Delta t = t_{\text{M3M}} - t_{\text{3T}}$$

6.3.1.6Абсолютная погрешность измерений температуры должна удовлетворять условию:

 Δt < ± 0.5 °C для датчика температуры, совмещенного с датчиком уровня гидростатического типа Δt < ± 0.1 °C для датчика температуры

- 6.3.2Определение метрологических характеристик комплексов АГК при измерении количества осадков с датчиком осадков челночного типа выполняется в следующем порядке:
 - 6.3.2.1 Установите осадкомер на ровную твердую поверхность.
- 6.3.2.2 Измерьте с помощью штангенциркуля внутренний диаметр d приемной камеры осадкомера.
- 6.3.2.3С помощью цилиндра 2-го класса точности «Klin» последовательно наполняйте приемную емкость осадкомера водой $V_{\text{эт}}$ (20, 100; 200; 500; 1000) мл. Значения эквивалентного эталонного количества осадков $M_{\text{эт}}$ вычисляются по формуле:

$$M_{\mathfrak{m}} = 4 \frac{V_{\mathfrak{m}}}{\pi d^2}$$

- 6.3.2.4 Фиксируйте показания комплекса АГК по каналу измерений количества осадков $M_{\mbox{\tiny изм}}.$
- 6.3.2.5 Вычислите абсолютную погрешность измерений количества осадков ΔM , по формуле:

$$\Delta M = M_{\text{\tiny M3M}} - M_{\text{\tiny 3T}}$$

- 6.3.2.6 Абсолютная погрешность измерений количества осадков должна удовлетворять: $\Delta M \leq \pm (0,1+0,01\cdot M_{\text{изм}}) \text{ мм}$
- 6.3.3 Определение метрологических характеристик комплексов АГК при измерении количества осадков с датчиком осадков весового типа выполняется в следующем порядке
 - 6.3.3.1 Установите осадкомер на ровную твердую поверхность.
- 6.3.3.2 Измерьте с помощью штангенциркуля внутренний диаметр d приемной емкости осадкомера.
 - 6.3.3.3 Снимите защитный кожух и приемную емкость.
 - 6.3.3.4 Фиксируйте показания комплекса АГК M_0
- 6.3.3.5 Установите в центр измерительной площадки осадкомера гирю класса точности F_2 согласно Таблице 3.

Таблица 3 – соответствие массы количеству осадков

	М _{экв}		
	Эквивалентное количество	Эквивалентное количество	
Масса гири, кг	осадков, мм	осадков, мм	
	(приемное отверстие	(приемное отверстие	
	200 cm^2)	400 cm^2)	
0,02	1,0	-	
0,04	2,0	1,0	
0,1	5,0	2,5	
1,0	50,0	25,0	
5,0	250,0	125,0	
10,0	500,0	250,0	
15,0	750,0	325,0	
30,0	1500,0	750,0	

- 6.3.3.6 Фиксируйте показания комплекса АГК по каналу измерений количества осадков $\mathbf{M}_{\scriptscriptstyle{\mathsf{H3M}}}$.
- 6.3.3.7 Вычислите абсолютную погрешность измерений количества осадков ΔM , по формуле:

$$\Delta M = (M_{\text{\tiny H3M}} - M_0) - M_{\text{\tiny 9KB}}$$

- 6.3.3.8 Абсолютная погрешность измерений количества осадков должна удовлетворять: $\Delta M \leq \pm 1$ мм
- 6.3.4Определение метрологических характеристик комплексов АГК при измерении уровня воды с уровнемерами гидростатического типа:
 - 6.3.4.1 Подключите калибратор давления к уровнемеру.
- 6.3.4.23адавайте калибратором измерительные точки $P_{\text{эт}}$ так, чтобы они были равномерно распределены по всему диапазону измерений (всего не менее пяти точек, первая и последняя точки должны соответствовать значениям верхнего и нижнего пределов диапазона измерений).
 - 6.3.4.3 Фиксируйте показания Низм комплекса АГК.
- 6.3.4.4Вычислите приведенную погрешность оН измерений уровня водного потока по формуле:

$$\sigma H = \frac{H_{\text{изм}} - H_{\text{эт}}}{20} \cdot 100\%$$

- где $H_{\text{эт}}$ = 0,101974 · Рэт; 0,101974 коэффициент, обусловленный отличием плотности воды при температуре наибольшей плотности от 1 кг/л и позволяющий перевести кПа в м.
 - 6.3.4.5Приведенная (ВПИ) погрешность измерений уровня воды должна удовлетворять: $\sigma H \le \pm 0.1$ % в диапазоне от 0 до 10 м включительно $\sigma H \le \pm 0.05$ % в диапазоне свыше 10 до 20 м
- 6.4 При нецелесообразности демонтажа оборудования допускается проведение периодической поверки комплексов АГК в условиях эксплуатации. Операции поверки выполняются три раза в течении одного межповерочного интервала (в период межень, половодье и между ними), в следующем порядке:
- 6.4.1 Определение метрологических характеристик комплексов АГК при измерении температуры выполняется в следующем порядке:
- 6.4.1.1 Подключите датчик температуры ПТСВ-2к-3 к преобразователю сигналов ТЕР-КОН.
- 6.4.1.2 Разместите датчик ПТСВ-2к-3 как можно ближе к датчику температуры комплекса АГК.
 - 6.4.1.3 Фиксируйте показания $t_{\text{эт}}$ ПТСВ и $t_{\text{изм}}$ комплекса АГК.

6.4.1.4 Вычислите абсолютную погрешность измерений температуры воды Δt по формуле:

$$\Delta t = t_{\text{M3M}} - t_{\text{3T}}$$

- 6.4.1.5 Абсолютная погрешность измерений температуры должна удовлетворять условию:
 - $\Delta t < \pm 0.5\,^{\circ}\mathrm{C}$ для датчика температуры, совмещенного с датчиком уровня гидростатического типа $\Delta t < \pm 0.1\,^{\circ}\mathrm{C}$
- 6.4.2 Определение метрологических характеристик комплексов АГК при измерении количества осадков выполняется в соответствии с пунктами 6.3.2 и 6.3.3
- 6.4.3 Определение метрологических характеристик комплексов АГК при измерении уровня воды комплекса АГК с датчиком уровня гидростатического типа проводятся в следующем порядке:
- 6.4.3.1 Показания рейки водомерной отсчитывают от высотных отметок гидрологического поста, указанных в техническом паспорте поста согласно ГОСТ 25855-83, результаты измерений должны быть приведены к нулю поста.
 - 6.4.3.2 Установите рейку водомерную на сваю гидрологического поста.
 - 6.4.3.3 Откройте клапан рейки и выдержите ее в воде не менее 1 мин.
 - $6.4.3.4~\mathrm{B}$ момент закрытия клапана рейки произвести отсчет уровня $\mathrm{H}_{\scriptscriptstyle{\mathrm{3T}}}$
 - 6.4.3.5 Фиксируйте показания $H_{\text{изм}}$ комплекса АГК.
 - 6.4.3.6 Вычислите приведенную погрешность оН измерений уровня воды по формуле:

$$\sigma H = \frac{H_{\text{изм}} - H_{\text{эт}}}{20} \cdot 100\%$$

- 6.4.3.7 Приведенная (ВПИ) погрешность измерений уровня воды должна удовлетворять: $\sigma H \le \pm 0.1$ % в диапазоне от 0 до 10 м включительно $\sigma H \le \pm 0.05$ % в диапазоне свыше 10 до 20 м
- 6.5 Подтверждение соответствия программного обеспечения производится в следующем порядке:
- 6.5.1 Проверьте пломбировку центрального устройства по схеме пломбирования, указанной в руководстве по эксплуатации.
 - 6.5.2 Подтверждение соответствия программного обеспечения.
- 6.5.3 Идентификация встроенного встроенного ПО осуществляется путем проверки номера версии. Установите соединение с комплексом АГК согласно технической документации. Номер версии отображается в окне терминальной программы после установки соединения с комплексом АГК.
 - 6.5.4 Результаты идентификации программного обеспечения считают положительными, если считанные данные о ПО не ниже указанных в таблице 4.

Таблица 2 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение			
	Исполнение 01	Исполнение 02	Исполнение 03	Исполнение 04
Идентификационное наименование ПО	ML-217/ ML- 317	WDL-214/ WDL-314	Sdi3v433_5v0_ 433mhz.bin	DK3000DSD- GPRS
Номер версии (идентификационный номер) ПО	не ниже 3.0В1	не ниже 3.0В1	не ниже 5.1	не ниже 1.211

7. Оформление результатов поверки

- 7.1 При проведении поверки составляется протокол, форма которого приведена в Приложении А.
- 7.2 Комплексы АГК, удовлетворяющие требованиям настоящей методики поверки, признается годным и на них оформляется свидетельство по форме, установленной приказом Министерства промышленности и торговли Российской Федерации № 1815 от 02.07.2015. В случае периодической поверки согласно пункту 6.4 данной методики в свидетельстве о поверки указываются диапазоны измерений уровня воды и температуры.
- 7.3 Комплексы АГК, не удовлетворяющие требованиям настоящей методики поверки, к эксплуатации не допускается, и на них выдается извещение о непригодности по установленной форме.
 - 7.4 Знак поверки наносится на свидетельство о поверке.

Приложение А (рекомендуемое)

Форма протокола поверки

Место установк Поверки (перви	 чная, периодическая, безд	01(01/T01/41/07)	
поверки (перви	чная, периодическая, оезд	емонтажная)	
1. Внешний осм 1.1 Выводы	отр	зультаты поверки	
2. Опробование 2.1 Замечания 2.2 Выводы			
3.1 Проверка ди	метрологических характер апазона и определение по	ристик комплекса АГК. грешности канала измерения те	мпературы волы:
t _{эт} , ⁰ C	t _{изм} , ⁰ С	Δt _{aδc} , ⁰ C	Вывод
3.2 Проверка ди			
Внутренний диа М _{эт} , мм	метр приемной камеры ос М _{изм} , мм	грешности канала измерения коладкомера $d = ___$ ΔM_{a6c}	личества осадков:
Знутренний диа	метр приемной камеры ос	адкомера d =	
Внутренний диа М _{эт} , мм	метр приемной камеры ос М _{изм} , мм апазона и определение пог	адкомера d =	Вывод
Знутренний диа М _{эт} , мм 3.3 Проверка диа Цатчик уровня г	метр приемной камеры ос Мизм, мм апазона и определение пог идростатического типа	адкомера d =	Вывод
Внутренний диа М _{эт} , мм	метр приемной камеры ос М _{изм} , мм апазона и определение пог	адкомера d =	Вывод
Знутренний диа М _{эт} , мм 3.3 Проверка диа Цатчик уровня г	метр приемной камеры ос Мизм, мм апазона и определение пог идростатического типа	адкомера d =	Вывод

4. Результаты идентификации програм	имного обеспечения	
На основании полученных результатог	в комплекс АГК признается:	
Для эксплуатации до «»		
Поверитель Подпись	ФИО.	
Дата поверки «»	20года.	