ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть-Приволга» по объекту ЛПДС «Ефимовка»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть-Приволга» по объекту ЛПДС «Ефимовка» (далее - АИИС КУЭ), предназначена для измерений активной и реактивной электрической энергии и мощности, потребленной за установленные интервалы времени технологическим объектом, сбора, обработки, хранения, формирования отчетных документови передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), трансформаторы напряжения (ТН), счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2- 5.

2-й уровень - информационно-вычислительный комплекс электроустановки (ИВКЭ) АИИС КУЭ, включающий в себя устройство сбора, передачи данных и синхронизации времени (УСПД) ARIS MT200 со встроенным источником точного времени ГЛОНАСС/GPS и каналообразующую аппаратуру.

3-й уровень - информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (АРМ), серверы синхронизации времени ССВ-1Г (Регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 39485-08) и программное обеспечение (ПО) ПК «Энергосфера»

Первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности без учета коэффициентов трансформации. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы.

На верхнем - третьем уровне системы выполняется обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации - участники оптового рынка электрической энергии и мощности через каналы связи. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации-участники оптового рынка электроэнергии (ОРЭ) и розничного рынка электроэнергии (РРЭ), в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются в виде хml-файлов формата 80020 в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности с использованием электронной цифровой подписи (ЭЦП) субъекта рынка. Передача результатов измерений, состояния средств и объектов измерений по группам точек поставки производится с сервера ИВК настоящей системы с учетом полученных данных по точкам измерений, входящим в АИИС КУЭ ОАО «АК «Транснефть» (Рег. № 54083-13).

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (счетчиков, УСПД и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г, входящими в состав «Центр сбора и обработки данных» (ЦСОД) АИИС КУЭ ПАО «Транснефть». В случае выхода из строя основного сервера синхронизации времени ССВ-1Г используется резервный. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством от сети ТСР/ІР согласно протоколу Network Time Protocol (NTP). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС/GPS, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление времени на сервере ИВК.

Синхронизация времени в УСПД осуществляется по сигналам единого календарного времени, принимаемым через устройство синхронизации системного времени (УССВ), реализованного на ГЛОНАСС/GPS-приемнике в составе УСПД. Время УСПД периодически сличается со временем ГЛОНАСС/GPS (не реже 1 раза в сутки), синхронизация часов УСПД проводиться независимо от величины расхождения времени.

Сличение часов счетчиков с часами УСПД происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация часов счетчиков проводиться при расхождении часов счетчика и УСПД более чем на ± 1 с.

В случае неисправности или ремонта УССВ УСПД имеется возможность синхронизации часов УСПД от уровня ИВК ПАО «Транснефть».

СОЕВ обеспечивает синхронизацию времени от источника точного времени при проведении измерений количества электроэнергии с точностью не хуже 5,0 с.

Журналы событий счетчиков, УСПД и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера». Метрологически значимая часть содержится в модуле, указанном в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Метрологически значимой частью специализированного программного обеспечения АИИС КУЭ является библиотека pso_metr.dll. Данная библиотека выполняет функции синхронизации, математической обработки информации, поступающей от приборов учета, и является неотъемлемой частью АИИС КУЭ.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование	ПК «Энергосфера»
программного обеспечения	Библиотека pso_metr.dll
Номер версии (идентификационный номер)	1.1.1.1
программного обеспечения	1.1.1.1
Цифровой идентификатор программного	
обеспечения (контрольная сумма	CBEB6F6CA69318BED976E08A2BB7814B
исполняемого кода)	
Алгоритм вычисления цифрового	MD5
идентификатора программного обеспечения	MIDS

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ, метрологические и технические характеристики АИИС КУЭ приведены в таблицах 2-5.

Таблица 2 - Состав ИК АИИС КУЭ.

\ \ \	_	Состав ИК АИИС КУЭ							
NeNe MK	Диспетчерское наименование присоединения	pe	егистрационный номер в Федеральн	ент трансформации, ном информационном фонде,		Вид СИ, ности, коэффициент трансформации, номер в Федеральном информационном фонде, обозначение, тип		Сервер	Вид энергии
1	2		3		4	5	6	7	
		TT	Kt = 0,5S Ktt = 600/5 Per. № 30709-05	A B C	ТЛП-10 ТЛП-10 ТЛП-10				
1	ЛПДС "Ефимовка",	ТН	Кт = 0,5 Ктн = 6000Ö3/100Ö3 Рег. № 3344-04	A B C	ЗНОЛ.06 ЗНОЛ.06 ЗНОЛ.06	_		Активная	
	КТПБ-35/6 кВ, яч.2, Ввод 6 кВ	Б-35/6 кВ,		СЭТ-4ТМ.03М	ARIS MT200 Per. № 53992-13	HP ProLiant BL 460c Gen8, HP ProLiant BL 460c G6	Реактивная		
		TT	Kt = 0,5S Ktt = 100/5 Per. № 15174-06	A B C	ТОП-0,66 ТОП-0,66 ТОП-0,66		400C G0		
2	ЛПДС "Ефимовка", КТПБ-35/6 кВ, яч.1, ТСН	Бфимовка", ПБ-35/6 кВ, В Рег. № 27524-04 СЭТ-4ТМ.03		,			Активная Реактивная		

		Состав АИИС КУЭ						
NeNe VIK	Диспетчерское наименование присоединения	реги	Вид СИ, класс точности, коэффициент трансформации, регистрационный номер в Федеральном информационном фонде, обозначение, тип			УСПД	Сервер	Вид энергии
1	2		3		4	5	6	7
3	ЛПДС «Ефимовка», ЗРУ-6 кВ, яч.21 Ввод №1	Счетчик ТН ТТ	Kt = 0,5S Ktt = 600/5 Per. № 25433-11 Kt = 0,5 Kth = 6000Ö8/100Ö8 Per. № 46738-11 Kt = 0,2S/0,5 Per. № 36697-12	A ТЛО-10 B ТЛО-10 C ТЛО-10 A ЗНОЛ B ЗНОЛ C ЗНОЛ		ARIS MT200	HP ProLiant BL	Активная Реактивная
4	ЛПДС «Ефимовка», ЗРУ-6 кВ, яч.22 Ввод №2	Счетчик ТН ТТ	Kt = 0,5S Ktt = 600/5 Per. № 25433-11 Kt = 0,5 Kth = 6000Ö8/100Ö8 Per. № 46738-11 Kt = 0,2S/0,5 Per. № 36697-12	A B C A B C	ТЛО-10 ТЛО-10 ТЛО-10 ЗНОЛ ЗНОЛ ЗНОЛ ЗНОЛ	Per. № 53992-13	460c Gen8, HP ProLiant BL 460c G6	Активная Реактивная

Таблица 3 - Метрологические характеристики ИК (активная энергия)

•	• •	Метрологические характеристики ИК						
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК, (δ) , %			Относительная погрешность ИК в рабочих условиях эксплуатации, (δ) , %			
		cos φ =	$\cos \varphi =$	cos φ =	$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	
		1,0	0,8	0,5	1,0	0,8	0,5	
1	2	3	4	5	6	7	8	
1.0.4	$0.01I_{\rm H} \le I < 0.05I_{\rm H}$	±1,8	±2,8	±5,3	±1,9	±2,9	±5,4	
1, 3-4	$0.05I_{H} \le I < 0.1I_{H}$	±1,0	±1,6	±2,8	±1,2	±1,7	±3,0	
(TT 0,5S; TH 0,5;	$0.1I_{H} \le I < 0.2I_{H}$	±1,0	±1,5	±2,8	±1,2	±1,7	±2,9	
Сч 0,2S/0,5)	$0.2I_{H} \leq I < I_{H}$	±0,8	±1,1	±2,1	±1,0	±1,3	±2,3	
010,2270,0)	$I_{H} \leq I < 1, 2I_{H}$	±0,8	±1,1	±2,1	±1,0	±1,3	±2,3	
	$0.01I_{\rm H} \le I < 0.05I_{\rm H}$	±1,7	±2,7	±5,2	±1,8	±2,8	±5,3	
2 (TT 0,5S; Сч 0,2S/0,5)	$0.05I_{H} \le I < 0.1I_{H}$	±0,8	±1,4	±2,6	±1,0	±1,5	±2,7	
	$0.1I_{H} \le I < 0.2I_{H}$	±0,8	±1,3	±2,5	±1,0	±1,5	±2,6	
	$0.2I_{H} \leq I < I_{H}$	±0,5	±0,9	±1,7	±0,8	±1,1	±1,9	
	$I_{H} \leq I < 1, 2I_{H}$	±0,5	±0,9	±1,7	±0,8	±1,1	±1,9	

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

	ологические характерис	Метрологические характеристики ИК				
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК, (δ) , %		Относительная погрешность ИК в рабочих условиях эксплуатации, (δ) , %		
		$\sin \varphi = 0.6$	$\sin \varphi = 0.87$	$\sin \varphi = 0.6$	$\sin \varphi = 0.87$	
1	2	3	4	5	6	
1 2 4	$0.01I_{\rm H} \le I < 0.05I_{\rm H}$	±4,4	±2,5	±4,6	±2,8	
1, 3-4	$0.05I_{\rm H} \le I < 0.1I_{\rm H}$	±2,6	±1,5	$\pm 2,8$	±1,9	
(TT 0,5S; TH 0,5;	$0.1I_{H} \le I < 0.2I_{H}$	±2,6	±1,5	±2,8	±1,9	
Сч 0,2S/0,5)	$0.2I_{H} \leq I < I_{H}$	±2,1	±1,2	±2,4	±1,7	
010,25/0,5/	$I_{H} \leq I < 1, 2I_{H}$	±2,1	±1,2	±2,4	±1,7	
	$0.01I_{\rm H} \le I < 0.05I_{\rm H}$	±4,3	±2,4	±4,5	±2,7	
2	$0.05I_{H} \le I < 0.1I_{H}$	±2,4	±1,3	±2,6	±1,7	
(TT 0,5S; Сч 0,2S/0,5)	$0.1I_{H} \le I < 0.2I_{H}$	±2,4	±1,3	±2,6	±1,7	
	$0.2I_{H} \leq I < I_{H}$	±1,8	±1,0	±2,1	±1,5	
	$I_{H} \leq I < 1, 2I_{H}$	±1,8	±1,0	±2,1	±1,5	

Примечания:

- 1 Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для cosj =1,0 нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для cosj <1,0 нормируется от $I_{2\%}$.
- 2 Погрешность в рабочих условиях указана при температуре окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 10 до плюс 35°C.
- 3 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой).
- 4 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;

5 Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчик электроэнергии по ГОСТ Р 52323-2005 в части активной электроэнергии и ГОСТ 52425-2005 в части реактивной электроэнергии.

Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик, УСПД на однотипные утвержденных типов. Замена оформляется актом в установленном в АО «Транснефть - Приволга» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 5.

Таблица 5 - Основные технические характеристики ИК

Таблица 5 - Основные технические характеристики ИК	
Наименование характеристики	Значение
1	2
Количество измерительных каналов	4
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- tok, % ot I_{hom}	от 100 до 120
- коэффициент мощности cosj	0,8
- частота, Гц	от 49,85 до 50,15
температура окружающей среды °С:	
- для счетчиков активной энергии:	от +21 до +25
ГОСТ Р 52323-2005	
- для счетчиков реактивной энергии:	от +21 до +25
ГОСТ Р 52425-2005	
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- TOK, % OT I _{HOM}	от 2(5) до 120
- коэффициент мощности	от 0,5 инд. до 0,8, емк.
- частота, Гц	от 49,6 до 50,4
диапазон рабочих температур окружающего воздуха, °С:	
- для TT и TH	от -60 до +35
- для счетчиков	от -40 до +65
- УСПД	от -30 до +50
Надежность применяемых в АИИС КУЭ компонентов:	
счётчики электрической энергии СЭТ-4ТМ.03М (Рег. №36697-08):	
- среднее время наработки на отказ, ч, не менее	140000
- среднее время восстановления работоспособности, ч, не более	2
счётчики электрической энергии СЭТ-4ТМ.03М (Рег. №36697-12):	
- среднее время наработки на отказ, ч, не менее	165000
- среднее время восстановления работоспособности, ч, не более	2
счётчики электрической энергии СЭТ-4ТМ.03 (Рег. №27524-04):	
- среднее время наработки на отказ, ч, не менее	90000
- среднее время восстановления работоспособности, ч, не более	2
УСПД ARIS MT200:	
- среднее время наработки на отказ, ч, не менее	88 000
- среднее время восстановления работоспособности, ч	24

Продолжение таблицы 5

Наименование характеристики	Значение
1	2
CCB-1Γ:	
- среднее время наработки на отказ, ч, не менее	45000
- среднее время восстановления работоспособности, ч	2
HP ProLiant BL 460c Gen8:	
- среднее время наработки на отказ Т, ч, не менее	261163
- среднее время восстановления работоспособности tв, ч,	0,5
не более;	
HP ProLiant BL 460c G6:	
- среднее время наработки на отказ Т, ч, не менее	264599
- среднее время восстановления работоспособности tв, ч,	0,5
не более.	
Глубина хранения информации	
счётчики электрической энергии:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не более	113,7
ИВК:	
- результаты измерений, состояние объектов и средств	
измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи;

в журналах событий фиксируются факты:

- журнал счётчика:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;
- журнал УСПД:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике и УСПД;
- пропадание и восстановление связи со счетчиком..

Защищенность применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:

- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- УСПД;
- сервера;

защита на программном уровне информации при хранении, передаче, параметрировании:

- электросчетчика;
- УСПД;
- сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений приращений электроэнергии на интервалах 30 мин (функция автоматизирована);
- сбора результатов измерений не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист формуляра на АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность системы АИИС КУЭ

Наименование	Обозначение	Кол-во, шт.
Трансформатор тока	ТЛО-10	6
Трансформатор тока	ТЛП-10	3
Трансформатор тока	ТОП-0,66	3
Трансформатор напряжения	ЗНОЛ	6
Трансформатор напряжения	3НОЛ.06	3
Счётчики электрической энергии трёхфазные многофункциональные	СЭТ-4ТМ.03М	3
Счётчики электрической энергии трёхфазные многофункциональные	СЭТ-4ТМ.03	1
УСПД	ARIS MT200	1
Сервер синхронизации времени	ССВ-1Г	2
Сервер с программным обеспечением	ПК «Энергосфера»	1
Методика поверки		1
Формуляр	ИЦЭ 1261РД-17.00.ФО	1
Руководство по качеству		1

Поверка

осуществляется по документу МП 70701-18 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть-Приволга» по объекту ЛПДС «Ефимовка». Методика поверки», утвержденному ФБУ «Ивановский ЦСМ» 19.12.2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2845-2003 «Измерительные трансформаторы напряжения $6/\sqrt{3}...35$ кВ. Методика поверки на месте эксплуатации»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей»;

- счетчиков СЭТ-4ТМ.03М в соответствии с документом «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145РЭ1, утвержденному руководителем ФБУ «Нижегородский ЦСМ» 04 мая 2012г.;
- счетчиков СЭТ-4ТМ.03 в соответствии с документом «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.124РЭ, утвержденному руководителем ФБУ «Нижегородский ЦСМ» 10 сентября 2004г.;
- УСПД ARIS MT200 по документу ПБКМ.424359.005 МП «Контроллеры многофункциональные ARIS MT200. Методика поверки», утвержденному ФГУП «ВНИИМС» 13 мая 2013 г.;
- ССВ-1 Γ по документу «Источники частоты и времени/ серверы точного времени ССВ-1 Γ . Методика поверки» ЛЖАР.468150.003-08 МП, утвержденному ФГУП ЦНИИС в ноябре 2008 Γ .:
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы GlobalPositioningSystem (GPS)), Рег. № 27008-04;
- термогигрометр ИВА-6 (исполнение ИВА-6H-Д) диапазон измерения температуры от 0 до плюс 60 °C, диапазон измерения относительной влажности от 0 до 98 %, диапазон измерения атмосферного давления от плюс 300 до плюс 1100 гПа, Рег. №46434-11;
- термометр стеклянный жидкостной вибростойкий авиационный ТП-6 диапазон измерения температуры от минус 55 до плюс 55 °C, Рег. №257-49;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл , Рег. №28134-12;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого средства измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть-Приволга» по объекту ЛПДС «Ефимовка», аттестованной ФБУ «Ивановский ЦСМ» (аттестат об аккредитации $N \ge 01.00259$ -2013 от 24.12.2013 г.).

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть-Приволга» по объекту ЛПДС «Ефимовка»

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

Изготовитель

Акционерное общество «Транснефть-Приволга» (АО «Транснефть-Приволга») ИНН 6317024749

HHH 0317024749

Адрес: 443020, Самарская область, г. Самара, Ленинская улица, 100

Телефон: +7 (846) 250-02-01 Факс: +7 (846) 999-84-46

Заявитель

Общество с ограниченной ответственностью «Инженерный центр «Энергия» (ООО «ИЦ «Энергия»)

ИНН 3702062476

Адрес: 195009, г. Санкт-Петербург, Свердловская набережная, 14/2 литера А, помещение

11-H

Телефон: +7 (4932) 366-300 Факс: +7 (4932) 581-031

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Ивановской области» (ФБУ «Ивановский ЦСМ»)

Адрес: 153000, г.Иваново, ул. Почтовая, д. 31/42

Телефон: (4932) 32-84-85 Факс: (4932) 41-60-79 E-mail post@csm.ivanovo.ru

Аттестат аккредитации ФБУ «Ивановский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311781 от 22.08.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2018 г.