УТВЕРЖДАЮ

Первый заместитель

генерального директора — заместитель по научной расоте

ФГУП «ВНИИФТРИ»

А.Н. Шитунов

« O7 »_

2017 г.

ИНСТРУКЦИЯ

Комплект измерительного модуля (КИМ)

МЕТОДИКА ПОВЕРКИ 651-17-040

Содержание

Общие сведения	, . 3
2 Операции поверки	
В Средства поверки	
Требования к квалификации поверителей	
5 Требования безопасности	
Условия поверки	. 4
7 Подготовка к поверке	
В Проведение поверки	
Оформление результатов поверки	
Ссылочные нормативные документы	12
Теречень сокращений	

1 Общие сведения

- 1.1 Настоящая методика поверки распространяется на комплекты измерительных модулей (КИМ) (далее КИМ), изготавливаемые АО «ОРКК» «НИИ КП», г. Москва, и устанавливает методы и средства их первичной и периодической поверок.
 - 1.2 Интервал между поверками 1 год.

2 Операции поверки

2.1 При поверке выполняют операции, представленные в таблице 1.

Таблица 1 — Перечень операций, выполняемых при поверке

	Цомар	Проведение поверки	
наименование операции	пункта мето-	после ремонта	при периоди- ческой поверке
1. Внешний осмотр.	8.1	да	да
2. Опробование комплекта измерительного модуля (КИМ), идентификация ПО	8.2	да	да
3. Определение (контроль) метрологических характеристик			
3.1. Определение доверительных границ инструментальной абсолютной погрешности (при доверительной вероятности 0,67) определения координат в плане, высоты и скорости по сигналам стандартной точности глобальных навигационных спутниковых систем ГЛОНАСС и GPS в частотном диапазоне L1	8.3	да	да

3 Средства поверки

3.1 Рекомендуемые средства поверки КИМ приведены в таблице 2.

Номер пункта методики	Требуемые технические характеристики средств поверки	Рекомендуемое средство поверки (тип)
8.3	Доверительная граница погрешности (по уровню вероятности 0,67): воспроизведения координат потребителя ГНСС в системах координат ПЗ-90.2, ПЗ-90.11, WGS-84, локальных системах 0,1 м; воспроизведения скорости изменения беззапросной дальности 0,005 м/с; воспроизведения беззапросной дальности по фазе дальномерного кода 0,05 м	единиц координат местоположения по

Таблица 2 — Средства измерений, используемые при поверки

- 3.2 Все средства поверки, применяемые при поверке КИМ, должны быть исправны, поверены и иметь свидетельства о поверке или оттиск поверительного клейма на приборе или в технической документации.
- 3.3 Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные, обеспечивающие определение метрологических характеристик КИМ с требуемой точностью.

4 Требования к квалификации поверителей

и по фазе несущей частоты 0,001 м

4.1 Поверка должна осуществляться лицами, квалифицированными в качестве поверителей в области радиотехнических измерений.

5 Требования безопасности

5.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019.

6 Условия поверки

- 6.1 При проведении поверки должны соблюдаться следующие условия:
 - температура окружающего воздуха от минус 40 до плюс 60 °C;
 - относительная влажность воздуха от 50 до 80 %;
 - напряжение питания в сети переменного тока от 100 до 240 В;
 - частота питания в сети переменного тока 50/60 Гц.

7 Подготовка к поверке

- 7.1 Поверитель должен изучить техническую документацию изготовителя, руководство по эксплуатации «Комплект измерительного модуля (КИМ) ЦДКТ.464316.101 РЭ» (далее РЭ) и применяемых средств поверки.
 - 7.2 Перед проведением операций поверки необходимо:
- проверить комплектность рекомендованных (или аналогичных им) средств поверки;
- заземлить (если это необходимо) рабочие эталоны, средства измерений и включить питание заблаговременно перед очередной операцией поверки (в соответствии со временем установления рабочего режима, указанным в РЭ).

8 Проведение поверки

- 8.1 Внешний осмотр
- 8.1.1 При проведении внешнего осмотра проверить отсутствие механических повреждений и ослабления элементов, четкость фиксации их положения, чёткость обозначений, чистоту и исправность разъёмов и гнёзд.
- 8.1.2 Результаты поверки считать положительными, если отсутствуют механические повреждения и ослабления элементов, фиксация их положения чёткая, разъёмы и гнёзда чистые и исправные. В противном случае КИМ бракуется и направляется в ремонт.
 - 8.2 Опробование КИМ, идентификация ПО
- 8.2.1 Для проверки работоспособности собрать схему измерений в соответствии с рисунком 1, подключить измерительный модуль из комплекта КИМ к ПЭВМ через преобразователь напряжения PoE-15.

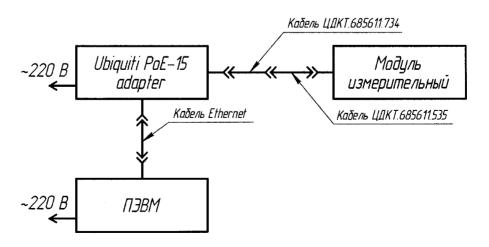


Рисунок 1 — Схема подключения КИМ для проверки работоспособности

- 8.2.2 Разместить измерительный модуль под открытым небом без объектов, препятствующих приёму навигационного сигнала, и включить КИМ в соответствии с РЭ.
- 8.2.3 Запустить специализированное ПО Novatel CDU на ПЭВМ согласно РЭ.
- 8.2.4 Подождать не менее 5 минут для получения текущих навигационных параметров.
- 8.2.5 Определить идентификационные данные ПО КИМ в соответствии с РЭ. Идентификационные данные ПО представлены в таблице 3.

Таблица 3 — Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование	Novatel CDU
Номер версии (идентификационный номер)	не ниже 3.9
Цифровой идентификатор (контрольная сумма исполняемого кода) Novatel CDU 3.9.0.7	9e09a8af94539923 4a04babf4c31512a
Алгоритм вычисления цифрового идентификатора	MD5

- 8.2.6 Результаты испытаний считать положительными, если получены результаты измерений текущих навигационных параметров сигналов ГНСС GPS/ГЛОНАСС, а идентификационные данные ПО соответствуют данным, указанным в таблице 3. В противном случае КИМ бракуется и направляется в ремонт.
- 8.3 Определение доверительных границ инструментальной абсолютной погрешности (при доверительной вероятности 0,67) определения координат в плане, высоты и скорости при работе по сигналам стандартной точности ГНСС ГЛОНАСС/GPS в частотном диапазоне L1
- 8.3.1 Для проведения измерений собрать схему, приведенную на рисунке 2. Подключить имитатор сигналов из состава рабочего эталона единиц координат местоположения 1 разряда по ГОСТ Р 8.750 (далее имитатор) к переизлучающей антенне в безэховой камере. Соединить измерительный модуль из комплекта КИМ с ПЭВМ через преобразователь напряжения РоЕ-15.

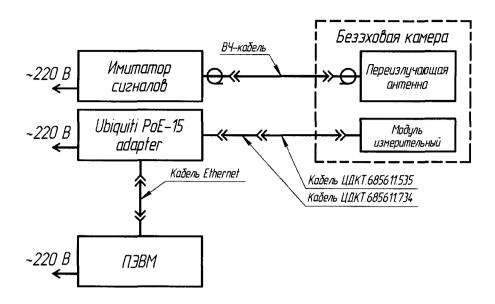


Рисунок 2 — Схема подключения КИМ для проведения измерений

- 8.3.2 Включить КИМ в соответствии с РЭ
- 8.3.3 Запустить специализированное ПО Novatel CDU на ПЭВМ и настроить на сохранение текущих навигационных параметров с частотой одно сообщение в секунду согласно руководству пользователя Novatel CDU.
- 8.3.4 Подготовить и запустить сценарий имитации с параметрами, представленными в таблице 4.

Таблица 4 — Параметры сценария

Наименование характеристики	Значение	
Формируемые спутниковые навигационные сигналы	ГЛОНАСС и GPS в частотном диапазоне L1 с открытым доступом	
Продолжительность	120 мин	
Дискретность записи	1 c	
Количество НКА GPS/ГЛОНАСС	не менее 8/8	
Параметры среды распространения навигационных сигналов	тропосфера присутствует ионосфера присутствует	
Формируемые сигналы функциональных дополнений	нет	
Начальные координаты: - широта - долгота	57°00'00" N 34°00'00" E	
- высота над эллипсоидом, м	200,00	
Скорость движения объекта, м/с	не более 50	

- 8.3.5 Взять из файла протокола сценария действительные значения навигационных параметров и сопоставить их с записанными навигационными параметрами КИМ на соответствующую эпоху.
- 8.3.6 Определение доверительной границы инструментальной абсолютной погрешности (при доверительной вероятности 0,67) определения координат в плане
- 8.3.6.1 Рассчитать абсолютную погрешность определения широты по формуле (1):

$$\Delta B_i = B_i - B_{\text{next}}, \tag{1}$$

где B_i — широта, полученная КИМ, угл. град.;

 $B_{\text{лейст}}$ — широта, заданная на имитаторе, угл. град.

8.3.6.2 Рассчитать абсолютную погрешность определения долготы по формуле (2):

$$\Delta L_i = L_i - L_{\text{neŭer}}, \tag{2}$$

где L_i — долгота, полученная КИМ, угл. град.;

 $L_{\text{дейст}}$ — долгота, заданная на имитаторе, угл. град.

8.3.6.3 Перевести полученные значения абсолютной погрешности определения широты и долготы в метры по формулам (3) и (4) соответственно:

$$\Delta B'_{i} = \frac{\Delta B_{i} \cdot \pi}{180} \cdot \frac{a \cdot (1 - e^{2})}{\sqrt{\left(1 - e^{2} \cdot \sin^{2} B_{\text{neŭcr}}\right)^{3}}};$$
(3)

$$\Delta L'_{i} = \frac{\Delta L_{i} \cdot \pi}{180} \cdot \frac{a \cdot (1 - e^{2}) \cdot \cos B_{\text{дейст}}}{\sqrt{(1 - e^{2} \cdot \sin^{2} B_{\text{дейст}})^{3}}},$$
(4)

где ΔB_i , ΔL_i — абсолютная погрешность определения широты и долготы соответственно, угл. с;

a — большая полуось общеземного эллипсоида, м (a = 6378137 м);

e — эксцентриситет общеземного эллипсоида ($e^2 = 0.00669437999$).

8.3.6.4 Рассчитать математическое ожидание определения погрешности широты по формуле (5) и долготы по формуле (6):

$$M_B = \frac{1}{N} \cdot \sum_{i=1}^{N} \Delta B_i \; ; \tag{5}$$

$$M_L = \frac{1}{N} \cdot \sum_{i=1}^{N} \Delta L_i \,. \tag{6}$$

8.3.6.5 Рассчитать СКО определения погрешности широты по формуле (7) и долготы по формуле (8):

$$\sigma_{B} = \sqrt{\frac{\sum_{i=1}^{N} (\Delta B_{i} - M_{B})^{2}}{N - 1}}; \tag{7}$$

$$\sigma_L = \sqrt{\frac{\sum_{i=1}^{N} (\Delta L_i - M_L)^2}{N - 1}}.$$
(8)

8.3.6.6 Рассчитать доверительную границу инструментальной абсолютной погрешности (при доверительной вероятности 0,67) определения координат в плане по формуле (9):

$$\Pi_{I} = \sqrt{\left(\left| M_{B} \right| + \sigma_{B} \right)^{2} + \left(\left| M_{L} \right| + \sigma_{L} \right)^{2}} . \tag{9}$$

- 8.3.7 Определение доверительной границы инструментальной абсолютной погрешности (при доверительной вероятности 0,67) определения высоты
- 8.3.7.1 Рассчитать абсолютную погрешность определения высоты по формуле (10):

$$\Delta h_i = h_i - h_{\text{neŭer}},\tag{10}$$

где h_i — высота, полученная КИМ, м;

 $h_{\text{лейст}}$ — высота, заданная на имитаторе, м.

8.3.7.2 Рассчитать математическое ожидание определения высоты по формуле (11):

$$M_h = \frac{1}{N} \cdot \sum_{i=1}^{N} \Delta h_i . \tag{11}$$

8.3.7.3 Рассчитать СКО определения высоты по формуле (12):

$$\sigma_h = \sqrt{\frac{\sum_{i=1}^{N} (\Delta h_i - M_h)^2}{N-1}}.$$
(12)

8.3.7.4 Рассчитать доверительную границу инструментальной абсолютной погрешности (при доверительной вероятности 0,67) определения высоты по формуле (13):

$$\Pi_h = M_h + \sigma_h. \tag{13}$$

- 8.3.8 Определение доверительной границы инструментальной абсолютной погрешности (при доверительной вероятности 0,67) определения скорости
- 8.3.8.1 Рассчитать абсолютную погрешность определения скорости по формуле (14):

$$\Delta v_i = v_i - v_{\text{mexor}},\tag{14}$$

где v_i — скорость, полученная КИМ, м/с;

 $v_{\text{дейст}}$ — скорость, заданная на имитаторе, м/с.

8.3.8.2 Рассчитать математическое ожидание определения скорости по формуле (15)(11):

$$M_{v} = \frac{1}{N} \cdot \sum_{i=1}^{N} \Delta v_{i} . \tag{15}$$

8.3.8.3 Рассчитать СКО определения скорости по формуле (16):

$$\sigma_{v} = \sqrt{\frac{\sum_{i=1}^{N} (\Delta v_{i} - M_{v})^{2}}{N-1}}.$$
(16)

8.3.8.4 Рассчитать доверительную границу инструментальной абсолютной погрешности (при доверительной вероятности 0,67) определения скорости по формуле (17):

$$\Pi_{\nu} = M_{\nu} + \sigma_{\nu}. \tag{17}$$

- 8.3.9 Результаты испытаний считать положительными, если значения доверительной границы инструментальной абсолютной погрешности (при доверительной вероятности 0,67) не превышают:
 - при определении координат в плане 1,8 м;
 - при определении высоты 3 м;
 - при определении скорости 0,03 м/с.

9 Оформление результатов поверки

- 9.1 При положительных результатах поверки на КИМ выдается свидетельство установленной формы.
- 9.2 На оборотной стороне свидетельства о поверке записываются результаты поверки.

9.3 В случае отрицательных результатов поверки поверяемый КИМ к дальнейшему применению не допускается, на него выдается извещение о непригодности к дальнейшей эксплуатации с указанием причин забракования.

Заместитель начальника НИО-8 по научной работе ФГУП «ВНИИФТРИ»

Федотов В.Н.

Начальник 841 лаборатории ФГУП «ВНИИФТРИ»

Печерица Д.С.

Старший научный сотрудник 841 лаборатории ФГУП «ВНИИФТРИ» Amfand-Бурцев С.Ю.

Ссылочные нормативные документы

	Номер раздела,
	подраздела, пункта,
	подпункта,
Обозначение документа, на который дана ссылка	перечисления,
обозна тепие документа, на которыи дана ссыяка	приложения,
	разрабатываемого
	документа, в котором
	дана ссылка
ГОСТ Р 8.750-2011 ГСИ. Государственная	3.2
поверочная схема для координатно-временных	
средств измерений	
ГОСТ 12.3.019-80 ССБТ. Испытания и измерения	5.1
электрические. Общие требования безопасности	
ЦДКТ.464316.101 РЭ. Комплект измерительного	7.1, 7.2, 8.2.2, 8.2.3, 8.2.5,
модуля (КИМ). Руководство по эксплуатации	8.3.2, 8.3.3
ЦДКТ.464316.101 ТУ. Комплект измерительного	7.1
модуля (КИМ). Технические условия	

Перечень сокращений

ГЛОНАСС — Глобальная навигационная спутниковая система (название глобальной спутниковой навигационной системы, разработанной Россией);

ГНСС — глобальная навигационная спутниковая система;

ГСИ — государственная система обеспечения единства измерений;

КИМ — комплект измерительного модуля (КИМ);

НКА — навигационный космический аппарат;

ПО — программное обеспечение;

ПЭВМ — персональная электронно-вычислительная машина;

ССБТ — система стандартов безопасности труда;

СК — система координат;

СКО — среднее квадратическое отклонение;

GPS — Global positioning system (название глобальной спутниковой навигационной системы, разработанной США).