

Системы контроля параметров бурения (СКПБ) infoDRILL

МЕТОДИКА ПОВЕРКИ

СОДЕРЖАНИЕ

1.	введение	2
2.	ОПЕРАЦИИ ПОВЕРКИ	3
3.	СРЕДСТВА ПОВЕРКИ	3
4.	УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ	3
5.	проведение поверки	4
6.	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	8

1. ВВЕДЕНИЕ

Настоящая методика устанавливает объем, средства и методы проведения первичной и периодической поверок систем контроля параметров бурения (СКПБ) infoDRILL, выпускаемых фирмой «Bentec GmbH Drilling & Oilfield Systems», Германия.

Системы контроля параметров бурения (СКПБ) infoDRILL (далее - системы) предназначены для измерений и контроля в реальном масштабе времени параметров процесса бурения, выполнения функций сигнализации и противоаварийной защиты, сбора данных, обработки, отображения и хранения информации о состоянии технологических параметров.

Ввод в эксплуатацию каждой системы у потребителя должен проводиться по положительным результатам первичной поверки, проведенной соответствующей метрологической службой. В дальнейшем поверка должна проводится с периодичностью один раз в два года и после каждого ремонта системы. Объем поверок в этом случае определяют их характер и содержание проведенного ремонта.

Измерительные компоненты системы поверяют с интервалами между поверками, установленными при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки системы, поверяется только этот компонент и поверка системы не проводится.

Настоящей методикой предусмотрен в основном порядок оценки метрологических характеристик вторичной части измерительных каналов системы (отдельно от первичных датчиков).

Допускается, если имеются технические возможности, поверка некоторых каналов контроля совместно с подключенными первичными датчиками. Оценка метрологических характеристик датчиков проводится по предусмотренным для них методикам.

Настоящей методикой предусмотрен расчетно-экспериментальный метод, при котором:

- при выбранном для поверки значении контрольного сигнала на входе вторичной части поверяемого канала определяют (расчетным путем) ожидаемые показания средств отображения информации;
- определяют (экспериментально) показания этих же средств отображения при подаче на входе вторичной части поверяемого канала равнозначного контрольного сигнала;
- определяют разницу в показаниях по результатам расчета и эксперимента и оценивают допустимость этой разницы установленным требованиям.

Межповерочный интервал – 2 года.

2. ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1. Таблица 1.

	Номер	Необходимость выполнения			
Наименование операции поверки	пункта методики поверки	при первичной поверке	при первичной поверке		
Проверка внешнего вида, маркировки, комплектности.	5.1	Да	Да		
Проверка функционирования системы	5.2	Да	Да		
Проверка метрологических характеристик измерительных каналов системы	5.3	Да	Да		
Идентификация программного обеспечения	5.4	Да	Да		

3. СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют основные средства измерений и вспомогательные устройства в соответствии с методиками поверки, указанными в описании типа на измерительные компоненты системы, а также калибраторизмеритель унифицированных сигналов эталонный ИКСУ-2000 (диапазон воспроизведения силы тока от 0 до 25 мА. Пределы допускаемой основной абсолютной погрешности \pm 0,003 мА. Диапазон воспроизведения напряжения постоянного тока от 0 до 12 В. Пределы допускаемой основной абсолютной погрешности \pm 0,003 В).

Допускается применение других основных и вспомогательных средств поверки, обеспечивающих определение метрологических характеристик с заданной точностью.

Все средства поверки должны быть исправны, и иметь подтверждение о пригодности к применению в установленном порядке.

4. УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

Условия поверки системы должны соответствовать условиям ее эксплуатации, нормированным в технической документации, средства поверки должны применяться в условиях, указанных в документации на них.

Перед проведением поверки необходимо выполнить следующие подготовительные работы:

- провести технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75;
- подготовить к работе средства измерений, используемые при поверке, в соответствии с руководствами по их эксплуатации (все средства измерений должны быть исправны и поверены).

Общие требования безопасности при проведении поверки - согласно ГОСТ 12.3.019-80.

5. ПРОВЕДЕНИЕ ПОВЕРКИ

5.1 Проведением внешнего осмотра проверяют маркировку и наличие необходимых надписей на наружных панелях, а также комплектность поставки. Все измерительные компоненты системы должны быть утвержденных типов, внесенных в Государственный реестр средств измерений РФ. Проверяют отсутствие механических повреждений, способных повлиять на работоспособность. Система не должны иметь механических повреждений, коррозии, нарушений покрытий, надписей и дефектов, препятствующих эксплуатации и поверке. Проверка комплектности проводится сличением наличной комплектности с паспортными данными.

Результат внешнего осмотра считают положительным, если маркировка, надписи на наружных панелях и комплектность соответствуют данным паспорта и отсутствуют механические повреждения, способные повлиять на работоспособность систем.

- 5.2 Проверка функционирования системы
- 5.2.1 Проверка функционирования компьютеров системы (сервера опроса, сервера базы данных (БД) и АРМ).
- 5.2.1.1 Подают напряжение питания на компьютер и прослеживают правильность прохождения загрузки операционной системы.
 - 5.2.1.2 Запускают на выполнение программу.
- 5.2.1.3 Компьютеры системы (APM) считают исправно функционирующими, если загрузка операционной среды прошла успешно, программа успешно запущена.
 - 5.2.2 Проверка функционирования системы в целом.
- 5.2.2.1 На одном из APM проводят опрос текущих показаний всех первичных преобразователей.
- 5.2.2.2 Опробование системы считают успешным, если по завершению опроса всех первичных преобразователей, в отчетах, присутствуют показания по всем измерительным каналам с указанием текущей даты и времени.
- 5.3 Проверка метрологических характеристик измерительных каналов системы

Основную погрешность каналов измерений систем определяют поэлементно (по частям) путем алгебраического суммирования погрешностей (см. формулу 1) первичного преобразователя и последующей (вторичной) части измерительного канала, включающей в себя вторичный преобразователь и периферийные устройства.

$$\gamma_{\rm MK} = |\gamma_{\rm II}| + |\gamma_{\rm BT,MK}| \tag{1}$$

где

 $\gamma_{\rm ик}$ - приведенная погрешность измерительного канала;

 $\gamma_{\rm n}$ - приведенная погрешность первичного преобразователя;

 $\gamma_{\text{вт.ик}}$ - приведенная погрешность вторичной части измерительного канала.

Основную погрешность первичного преобразователя определяют по методике, установленной нормативными документами на него, а вторичной части

- с помощью образцового средства, имитирующего измерительный сигнал на выходе первичного преобразователя.
- 5.3.1 Проверку основной приведенной погрешности вторичной части измерительных каналов:
 - уровня бурового раствора в приемных емкостях;
 - расхода бурового раствора выходящего из скважины;
 - расхода бурового раствора в нагнетательной линии;
 - давления нагнетания бурового раствора в стояке;
 - давления бурового раствора в затрубном пространстве;
 - натяжения троса трубного ключа;
 - нагрузка на крюк;
 - числа ходов бурового насоса,

проводят с помощью калибратора путем имитации соответствующего значения выходных сигналов первичных преобразователей на входе вторичной части измерительных каналов и снимают показания на выходе каналов.

Основную погрешность в процентах вычисляют как разность между расчетным значением технологического параметра, которое соответствует заданному по образцовому средству значению физической величины, и значением технологического параметра, по-лученным по показаниям на выходе канала, отнесенную к верхнему пределу измерения параметра.

Проверку проводят в следующей последовательности:

1. Определяем по формуле (2) расчетное значение контрольного сигнала подаваемого на вход проверяемого ИК и соответствующего значениям трех точек (25%; 50%; 100%) диапазона измерений.

$$V_c = \frac{\Pi_p \times V_d}{\Pi_K} \tag{2}$$

где

 $\Pi_{\rm p}$ - значение показаний проверяемого параметра, соответствующее значениям трех точек (25 %; 50 %; 100 %) диапазона измерений;

 Π_{κ} - предельное значение диапазона измерений для данного параметра;

 $V_d\,$ - верхнее предельное значение контрольного сигнала;

 V_{c} - значение контрольного сигнала, подаваемого на вход проверяемого канала.

Расчет оформляем в виде таблицы 2

Таблица 2

Измерительный канал:	Пк	Vd	Пр	Vc	Пэ
Уровня бурового раствора в приемных емкостях		0: 90 dMa s	E E		
Ррасхода бурового раствора выходящего из скважины		2			
Расхода бурового раствора в нагнетательной линии					
Давления нагнетания бурового раствора в стояке					
Давления бурового раствора в затрубном пространстве					
Натяжения троса трубного ключа					
Нагрузки на крюк					
Числа ходов бурового насоса	A. V & A. D. S. V. 2004			7. 44. 30.000 30.0 37.0	10 5 1000 10 50

2. С помощью калибратора, имитирующего измерительный сигнал на выходе первичного преобразователя, поочередно подаем по три расчетных значения контрольного сигнала Vc (таблица 2). Рассчитываем основную приведенную погрешность вторичной части каждого измерительного канал $\gamma_{\rm BT.uk}$ в процентах для каждого значения Vc проверяемого параметра по формуле (3):

$$\gamma_{\text{BT.HK}} = 100 \times \left(\Pi_{\text{3}} - \Pi_{\text{p}}\right) / \Pi_{\text{K}} \tag{3}$$

где:

Пэ - экспериментальное значение показаний проверяемого параметра на средствах отображения;

Пр - расчетное значение показаний проверяемого параметра на средствах отображения;

Пк - предельное значение диапазона измерений проверяемого параметра. Результаты испытаний и расчеты оформляем в виде таблицы 3

Таблица 3

Измерительный канал:	Пк	Пр	Пэ	$\gamma_{\rm BT, HK}$
уровня бурового раствора в приемных емкостях	2014-0000000			
расхода бурового раствора выходящего из скважины				
Расхода бурового раствора в нагнетательной линии				
Давления нагнетания бурового раствора в стояке				
Давления бурового раствора в затрубном пространстве				
Натяжения троса трубного ключа				
Нагрузки на крюк				
Числа ходов бурового насоса				

3. По полученным данным, рассчитываем приведенную погрешность $\gamma_{\text{ик}}$ каждого измерительного канала по формуле (1)

Полученные данные оформляем в виде таблицы 4

Таблипа 4

Измерительный канал:	γ_{Π} , %	$\gamma_{\rm BT, uK}$	$\gamma_{\rm uk}$	допуск	Вывод
уровня бурового раствора в приемных емкостях		5,51			
расхода бурового раствора выходящего из скважины					
Расхода бурового раствора в нагнетательной линии					
Давления нагнетания бурового раствора в стояке					
Давления бурового раствора в затрубном пространстве					
Натяжения троса трубного ключа					
Нагрузки на крюк					
Числа ходов бурового насоса					

*- При расчете $\gamma_{\rm uk}$ в качестве $\gamma_{\rm вт. uk}$ берется наибольшее значение из трех определенных.

Результаты проверки считаются положительными, если полученная для каждого проверяемого измерительного канала погрешность $\gamma_{\rm ик}$ находятся в пределах соответствующих пределам допускаемой приведенной погрешности данного измерительного канала.

5.3.2 Проверка основной приведенной погрешности измерительных каналов положения талевого блока относительно стола ротора, скорости перемещения талевого блока и уровня бурового раствора в доливочной емкости.

В состав данных измерительных каналов не входит вторичный преобразователь с аналоговым входом, а первичные преобразователи имеют

только цифровой выход. Таким образом, передача данных происходит напрямую по цифровому каналу передачи данных, а составляющими погрешности передачи информации по ГОСТ 4.199, погрешностью обработки данных можно пренебречь.

В данном случае проверка метрологических характеристик измерительных каналов проводится по предусмотренной для данного первичного преобразователя методике.

5.4 Идентификация программного обеспечения.

Проверка выполнятся в соответствии с требованиями ГОСТ Р 8.654-2009 «ГСИ. Требования к программному обеспечению средств измерений. Основные положения».

После авторизации убедиться, что идентификационное наименование и номер версии программного обеспечения соответствует заявленным (наименование ΠO и его версия определяются в открывшемся окне после загрузки ΠO).

Результат испытаний считать положительным, если Идентификационное наименование и номер версии программного обеспечения соответствует заявленному.

Проверка цифрового идентификатора программного обеспечения

Проверку проводить с помощью программы FSUM. Алгоритм вычисления цифрового идентификатора - MD5. Контрольные суммы исполняемого кода предоставляются Заказчиком на каждый выделяемый модуль ПО.

Проверка Цифрового идентификатора программного обеспечения происходит на ИВК (сервере), где установлено ПО InfoDRILL Для чего нужно скопировать файл FSUM в каталог с файлами программы InfoDRILL. Запустить командную строку «Пуск—>Выполнить—>СМD—>«Ввод». В открывшемся окне с помощью команды CD (change directory) перейти в каталог, где установлено ПО InfoDRILL. Ввести команду FSUM -MD5 «название исполняемого файла». После чего будет получена контрольная сумма.

Сведения об идентификационных данных (признаках) ПО СИ и методах его идентификации вносят в протокол испытаний в виде, представленном в таблице 5.

Таблица 5.

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО			
Номер версии (идентификационный номер) ПО			
Цифровой идентификатор ПО			
Алгоритм вычисления цифрового идентификатора программного обеспечения	MD5	MD5	MD5
идентификатора программного обеспечения			

Результат проверки считается положительным, если выполняются требования настоящего пункта.

6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 6.1 При положительном результате поверки в паспорт системы вносится запись о положительном результате поверки и наносится поверительное клеймо или выдается «Свидетельство о поверке» установленной формы.
- 6.2 При отрицательном результате поверки система к дальнейшему применению не допускается, поверительное клеймо гасится, «Свидетельство о поверке» аннулируется, выписывается «Извещение о непригодности» или делается соответствующая запись в паспорте.