ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учёта электроэнергии ООО «ПКМ-Агро»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «ПКМ-Агро» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, потреблённой за установленные интервалы времени отдельными технологическими объектами ООО «ПКМ-Агро», сбора, хранения и обработки полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительные каналы состоят из двух уровней АИИС КУЭ:

- 1-й уровень измерительно-информационный комплекс (ИИК), включающий в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН), многофункциональные счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приёма-передачи данных;
- 2-й уровень информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД), устройство синхронизации системного времени (УССВ), АРМы и программное обеспечение (ПО) «АльфаЦЕНТР».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счётчика без учёта коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
 - средняя на интервале времени 30 мин активная (реактивная) электрическая мощность.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает через GSM модем в ИВК, где выполняется дальнейшая обработка измерительной информации, в частности вычисление электроэнергии и мощности с учётом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчётных документов.

Передача информации участникам оптового рынка электроэнергии осуществляется от сервера БД по сети Internet через интернет-провайдера, по линиям сотовой связи.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя УССВ типа УСВ-2 на основе GPS приемника точного времени, часы сервера БД и счётчиков. Время сервера БД ИВК синхронизовано с временем приёмника, сличение ежесекундное. Синхронизация осуществляется при расхождении показания часов приёмника и сервера БД на 0,1 с. Сервер БД осуществляет синхронизацию времени счётчиков. Сличение времени часов счётчиков с временем часов сервера БД осуществляется при каждом опросе счётчиков, корректировка времени часов счётчиков выполняется при достижении расхождения со временем часов сервера БД ±2 с.

Журналы событий счётчиков и сервера БД отображают факты коррекции времени с обязательной фиксации времени до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется (ПО) «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 - Идентификационные данные ПО

таолица т - идентификационные данные тто		
Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	«АльфаЦЕНТР»	
Номер версии (идентификационный номер) ПО	15.08.01	
Цифровой идентификатор ПО:		
Программа – планировщик опроса и передачи	7cee65b056564219916e0a1e5b36b86a	
данных Amrserver.exe		
Драйвер ручного опроса счетчиков и УСПД	523c3fe5907a1e78fe3c1217a51745a9	
Amrc.exe		
Драйвер автоматического опроса счетчиков и	0c5fc70674f0d1608352431e9dd3c85d	
УСПД Amra.exe		
Драйвер работы с БД Cdbora2.dll	afb53e0b0c26ad9223dc7e7f28a0e88b	
Библиотека шифрования пароля счетчиков	0939ce05295fbcbbba400eeae8d0572c	
encryptdll.dll		
Библиотека сообщений планировщика опросов	b8c331abb5e34444170eee9317d635cd	
alphamess.dll		
Алгоритм вычисления цифрового	MD5	
идентификатора		

Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2,3,4.

Таблица 2 – Состав ИК

	- wow				
№ ИК	Наименование ИК	TT	ТН	Счётчик	УСПД/УССВ/ Сервер
	РП-10 кВ	ТОЛ-10	НАМИТ-10-2	ПСЧ-4ТМ.05М	
1	«Техсапфир», 1	$KT_{TT}=0.5s$	$KT_{TH} = 0.5$	$KT_{cq}=0,5s/1$	/УСВ-2 Рег. №
1	сш., яч.3, КЛ	$K_{TT} = 600/5$	$K_{TH} = 10000/100$	$K_{c4}=1$	41681-09/
	10кВ №3	Рег. № 7069-07	Рег. № 18178-99	Рег. № 36355-07	Aqua Server E50 D20
	РП-10 кВ	ТОЛ-10	НАМИТ-10-2	ПСЧ-4ТМ.05М	Intel® Xeon(R) CPU
2	«Техсапфир», 2	$KT_{TT} = 0.5s$	$KT_{TH} = 0.5$	$KT_{c4}=0,5s/1$	5110@ 1,6 GHz
	сш., яч.14, КЛ	$K_{TT} = 600/5$	$K_{TH} = 10000/100$	$K_{cq}=1$	
	10кВ №14	Рег. № 7069-07	Рег. № 18178-99	Рег. № 36355-07	

Примечания:

- 1. Допускается замена счетчиков, ТТ и ТН на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 2. Допускается замена УССВ на аналогичные утверждённых типов.
- 3. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, внося изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъёмлемая часть.

Таблица 3 – Основные метрологические характеристики ИК

№ ИК	Вид энергии	Границы основной	Границы погрешности в
Nº YIK		погрешности (±d), %	рабочих условиях (±d), %
1.2	Активная	1,24	1,74
1,2	Реактивная	1,25	1,86

Примечания:

- 1. Характеристики погрешности даны для измерений электроэнергии (получасовая).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0,95.

Таблица 4 – Основные технические характеристики ИК

Наименование характеристики ИК	Значение
1	2
Количество измерительных каналов	2
Начальные условия:	
параметры сети:	
- напряжение % от U _{ном}	от 98 до 102
- ток % от I _{ном}	от 5 до 120
- коэффициент мощности, соѕ ф	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение % от U _{ном}	от 90 до 110
- ток % от I _{ном}	от 5 до 120
- коэффициент мощности, соѕ ф	$0,5_{ m инд}$ до $0,8_{ m \ emk}$
- температура окружающей среды для ТТ и ТН, °	от -20 до +35
- температура окружающей среды в месте расположения	
электросчётчиков, °С	от +10 до +30
Надёжность применяемых в АИИС КУЭ компонентов:	
Электросчётчики:	
- среднее время наработки на отказ, ч, не менее	140000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	50000
- среднее время восстановления работоспособности, ч	1

Продолжение таблицы 4

1	2
Глубина хранения информации:	
Электросчётчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	113,7
- при отключении питания, лет, не менее	40
Сервер:	
- хранение результатов измерений и информации	
средств измерений, лет, не менее	3,5
Пределы допускаемой погрешности СОЕВ, с	± 5

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

Регистрация событий:

- в журнале событий счётчика:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- сервера БД;
- защита информации на программном уровне:
- результатов измерений (при передаче, возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервер БД.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Измерительный трансформатор напряжения	НАМИТ-10-2	2
Измерительный трансформатор тока	ТОЛ-10	6
Счетчик активной и реактивной	ПСЧ-4ТМ.05М	2
электрической энергии		
Сервер	Aqua Server E50 D20	1
	Intel® Xeon (R)	
	CPU 5110@ 1,6 GHz	
ПО	АльфаЦЕНТР	1
Методика поверки	-	1

Поверка

осуществляется по документу МП 72509-18«Система автоматизированная информационноизмерительная коммерческого учета электроэнергии ООО «ПКМ-Агро». Методика поверки», утвержденному ФБУ «Воронежский ЦСМ» 13 июня 2018 г.

Основные средства поверки:

- TT πο ΓΟCT 8.217-2003;
- TH πο ΓΟCT 8.216-2011;
- Счётчики ПСЧ-4ТМ.05М по документу: ИЛГШ.411152.146 РЭ1 являющемся приложением к руководству по эксплуатации ИЛГШ.411152.146 РЭ, согласованному с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 21 ноября 2007 г.
- УСВ-2 по документу: «Устройство синхронизации времени УСВ-2. Методика поверки ВЛСТ 237.00.000И1», утвержденному Φ ГУП «ВНИИ Φ ТИ» в 2009 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (регистрационный номер в Федеральном информационном фонде 27008-04);

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учёта электроэнергии ООО «ПКМ-Агро»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное Общество «Первая сбытовая компания» (АО «Первая сбытовая компания») ИНН 3123200083

Адрес: 308000, г. Белгород, ул. Князя Трубецкого, д. 37

Телефон: +7 (472) 233-47-18 Факс: +7 (472) 233-47-28

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Воронежской области»

Адрес: 394018, г. Воронеж, ул. Станкевича, 2

Телефон (факс): +7 (473) 220-77-29

Аттестат аккредитации ФБУ «Воронежский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311949 от 03.11.2016 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

А.В. Кулешов

М.п.	« »	2018
IVI.II.	« »	2010