

Закрытое Акционерное Общество «АКТИ-Мастер» АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА

> 127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

УТВЕРЖДАЮ

Генеральный директор ЗАО «АКТИ-Мастер»

"АКТИ-Мастер "ACTI-Master

CARDENISEE

В.В. Федулов

« 10 » августа 2018 г.

Государственная система обеспечения единства измерений

Анализаторы-генераторы высокочастотных сигналов модульные NI PXIe-5840

> Методика поверки NI5840/MII-2018

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

Д.Р. Васильев

г. Москва 2018 Настоящая методика поверки распространяется на анализаторы-генераторы высокочастотных сигналов модульные NI PXIe-5840 (далее – приборы), изготавливаемые компаниями "National Instruments Corporation" (США), "National Instruments Corporation" (Венгрия), "National Instruments Malaysia Sdn. Bhd." (Малайзия), и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции		Проведени	Проведение операции	
		при поверке		
	методики	первичной	периодической	
Внешний осмотр и подготовка к поверке	6	да	да	
Опробование и функциональное тестирование	7.2	да	да	
Определение метрологических характеристик	7.3			
Определение погрешности частоты опорного генератора	7.3.1	да	да	
Определение неравномерности АЧХ генератора сигналов в мгновенной полосе частот	7.3.2	да	да	
Определение погрешности установки уровня мощности генератора сигналов	7.3.3	да	да	
Определение уровня фазовых шумов генератора	7.3.4	да	да	
Определение уровня фазовых шумов анализатора	7.3.5	да	да	
Определение погрешности измерения уровня мощности анализатором сигналов	7.3.6	да	да	
Определение неравномерности АЧХ анализатора сигналов в мгновенной полосе частот	7.3.7	да	да	

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

2.2 Средства измерений должны быть исправны, поверены и иметь документы о поверке.

		+		
	Наименование	Номер	Требуемые	Рекомендуемый тип
N⁰	средства	пункта	технические	средства поверки,
	поверки	методики	характеристики	рег. номер реестра
1	2	3	4	5
			1. Средства измерений	
1.1	Стандарт	7.3.1	относительная погрешность	Стандарт частоты
	частоты		частоты 10 MHz не более	рубидиевый Stanford
			±1·10 ⁻⁸ ; уровень сигнала	Research Systems FS725
			от 0 до +10 dBm	рег. № 31222-06
1.2	Анализатор	7.3.1	диапазон частот	Анализатор спектра
	сигналов	7.3.4	от 10 MHz до 12 GHz;	Rohde & Schwarz FSV13
			уровень фазовых шумов при	рег. № 42593-09
			отстроике 20 кнг на частотах	-
			do 3 GHz He bonee $-110 dBc/Hz$,	
			до 6 GHz не более –104 dBc/Hz	

Таблица 2 – Средства поверки

N15840/M∏-2018	NI PXIe-5840. Методика поверки	стр. 2 из 17

Продолжение таблицы 2

1	2	3	4	5
1.3	Ваттметр поглощаемой СВЧ мощности	7.3.2 7.3.3	относительная погрешность измерения мощности от -35 до +5 dBm на частотах от 300 MHz до 6 GHz не более ±0.25 dB	Преобразователь измерительный Rohde & Schwarz NRP-Z21 per. № 37008-08
1.4	Генератор сигналов	7.3.6 7.3.7	диапазон частот от 20 MHz до 6 GHz; диапазон уровня от –35 до +10 dBm	Генератор сигналов Rohde & Schwarz SMB-100А; рег. № 50188-12
1.5	Ваттметр проходящей СВЧ мощности	7.3.6 7.3.7	относительная погрешность измерения мощности от –35 до +5 dBm на частотах от 20 MHz до 6 GHz не более ±0.25 dB	Ваттметр проходящей СВЧ мощности Rohde & Schwarz NRP-Z28 рег. № 43643-10
21	Шасси		ие менее 12-ти спотор РУІе	National Instruments
2.1	PXI Express	1 азделы 6, 7		PXIe-1075
2.2	Модуль контроллера	Разделы 6, 7	PXI Express HDD \geq 40 GB, O3Y \geq 512 MB	National Instruments PXIe-8840
2.3	Монитор, клавиатура, манипулятор «мышь»	Разделы 6, 7	-	-
2.4	Кабели	Раздел 7	BNC(m) SMA(m)	-
2.5	Адаптеры	Раздел 7	MMPX(m)-SMA(f) SMA(m)-BNC(f) SMA(m)-N(f) SMA(f)-N(m)	вместо кабелей и адаптеров тип SMA можно использовать адаптеры тип К (2.92mm)
	·	· · · · · · · · · · · · · · · · · · ·	3. Программное обеспечение	k
3.1	Операционная система	Разделы 6, 7	управление работой драйверов	"Windows 7/10" "LabVIEW" 2016 SP1
3.2	Драйверы	Разделы 6, 7	управление прибором	"NI-RFSA" 16.0.3 и выше "NI-RFSG" 16.0.3 и выше

2.3 Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых модулей с требуемой точностью.

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области радиотехнических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

4.2 Во избежание несчастного случая и для предупреждения повреждения модуля необходимо обеспечить выполнение следующих требований:

N15840/МП-2018	N1 РХІе-5840. Методика поверки	стр. 3 из 17
		1 1

- подсоединение шасси с прибором и средств поверки к сети должно производиться с помощью сетевых кабелей из комплекта шасси и комплектов средств поверки;

- заземление шасси с поверяемым прибором и средств поверки должно производиться посредством заземляющего провода сетевых кабелей;

- запрещается работать с поверяемым прибором при снятых панелях;

- запрещается работать с прибором в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с прибором в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±3) °С;

- относительная влажность воздуха от 30 до 80 %;

- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов прибора;

- отсутствие механических повреждений корпуса прибора;

- правильность маркировки и комплектность прибора.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого модуля, его следует направить в сервисный центр для проведения ремонта.

6.2 Подготовка к поверке

6.2.1 Перед началом работы необходимо изучить руководство по эксплуатации прибора, а также руководства по эксплуатации применяемых средств поверки.

6.2.2 Выполнить загрузку программного обеспечения по следующей процедуре:

1) установить контроллер в левые слоты шасси (на контроллере должны быть установлены программы "Windows 7/10" и "LabVIEW".

2) присоединить монитор, клавиатуру и мышь к разъемам контроллера.

3) подключить шасси и монитор к сети (220 ± 10) V; (50 ± 0.5) Hz.

4) инсталлировать программные пакеты "NI-RFSA" и "NI-RFSG" на контроллер в соответствии с указаниями руководства по эксплуатации (вместе с ними будет установлена программа "Measurement & Automation Explorer".

5) остановить работу контроллера и выключить питание шасси.

6.2.3 Выполнить установку прибора в слоты PXIe шасси.

6.2.4 Установить фальш-панели на оставшимися свободными слоты шасси.

6.2.5 Включить питание шасси и дождаться загрузки контроллера. Установить скорость вентилятора шасси в положение HIGH.

6.2.6 Выдержать поверяемый прибор и средства поверки во включенном состоянии в соответствии с указаниями руководств по эксплуатации.

Минимальное время прогрева прибора 30 min.

NUS940/MET 2019	NI DVI- 6940 Management	4 17
113040/1111-2010	пі Рліс-зочо. методика поверки	стр. 4 из 1 /

7.1 Общие указания по проведению поверки

В процессе выполнения операций результаты заносятся в протокол поверки.

Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах раздела 7. При получении отрицательных результатов необходимо повторить операцию. При повторном отрицательном результате модуль следует направить в сервисный центр для проведения регулировки или ремонта.

Операции раздела 7.3 могут быть выполнены в любой последовательности.

7.2 Опробование и функциональное тестирование

7.2.1 Запустить программу "Measurement & Automation Explorer".

Выбрать в списке папку "Software", "NI-RFSA", "Configuration Support". Записать в столбец 2 таблицы 7.2 отображаемый номер версии программного обеспечения (Version) NI-RFSA.

Выбрать в списке "NI-RFSG", "Configuration Support". Записать в столбец 2 таблицы 7.2 отображаемый номер версии программного обеспечения (Version) NI-RFSG.

7.2.2 В меню "Devices & Interfaces" программы "Measurement & Automation Explorer" выбрать ярлык с наименованием шасси и убедиться в том, что в списке устройств отображается наименование модуля и номер слота шасси.

Кликнуть на имени модуля, запустить процедуру диагностики "Self-Test". После завершения процедуры должно появиться сообщение "The self test completed successfully".

7.2.3 Запустить виртуальную панель "RFSA Soft Front Panel".

Открыть сессию анализатора:

Device/System, Open Session, выбрать наименование прибора из списка. При этом не должны появиться сообщения об ошибках.

7.2.4 Запустить виртуальную панель "RFSG Soft Front Panel".

Открыть сессию генератора:

Device/System, Open Session, выбрать наименование прибора из списка. При этом не должны появиться сообщения об ошибках.

7.2.5 Запустить процедуру автоподстройки, для чего выполнить действия: Закрыть сессию анализатора на панели NI-RFSA:

Device/System, Close Session

на панели NI-RFSG выбрать: Device/System, Calibration, Self Calibration.

ПРИМЕЧАНИЕ: панели NI-RFSA и NI-RFSG выполняют одну и ту же процедуру автоподстройки, поэтому нет необходимости ее запуска с обеих панелей, при этом сессия на одной из панелей должна быть открыта, а другой панели закрыта.

Записать результаты проверки в столбец 2 таблицы 7.2.

Содержание проверки	Результат проверки	Критерий проверки
1	2	3
Проверка номера версии ПО		номер версии не ниже
NI-RFSA		16.0
NI-RFSG		16.0
Диагностика (Self Test)		The self test completed successfully
Запуск виртуальных панелей		
"RFSA Soft Front Panel"		нет сообщений об ошибках
"RFSG Soft Front Panel"		нет сообщений об ошибках
Автоподстройка (Self Calibration)		Calibration successfully completed

Таблица 7.2 – Опробование и функциональное тестирование

NI5840/MII-2018

7.3 Определение метрологических характеристик

7.3.1 Определение погрешности частоты опорного генератора

7.3.1.1 Соединить кабелем BNC(m) выход "10 MHz" стандарта частоты FS725 с входом синхронизации "REF IN" анализатора СПЕКТРА.

Используя адаптеры MMPX(m)-SMA(f) и SMA(f)-N(m), соединить кабелем SMA(m) выход синхронизации "REF OUT" поверяемого прибора с входом "RF IN" анализатора спектра.

7.3.1.2 На панели NI-RFSG поверяемого прибора сделать установки: Preset

Device/System, Reference Clock, Ref Clk Export, Ref Out

7.3.1.3 Выполнить установки на анализаторе спектра: Reference Level 10 dBm Center Freq 10 MHz, Span 1 kHz Marker, Peak Search

7.3.1.4 Ввести на анализаторе спектра отсчет частотомера.

Записать отсчет маркера в столбец 3 таблицы 7.3.1.

Для периодической поверки рассчитать пределы допускаемых значений Fmin, Fmax и записать их в столбцы 2 и 4 таблицы 7.3.1, используя следующие соотношения:

Fmin = $(10.00000 - \Delta F)$; Fmax = $(10.000000 + \Delta F)$

 $\Delta F = F \cdot (\delta_0 + N \cdot \delta_A); F = 10 \text{ MHz}; N - количество лет после заводской подстройки$ $<math>\delta_0 = 1, 2 \cdot 10^{-6}, \delta_A = 1 \cdot 10^{-6}$

Таблица 7.3.1 – Погрешность частоты опорного генератора

Установленное значение, MHz	Нижний предел допускаемых значений, MHz	Измеренное значение частоты, MHz	Верхний предел допускаемых значений, MHz	
1	2	3	4	
Пе	Первичная поверка или поверка после подстройки			
10.000 000	9.999 978		10.000 022	
Периодическая поверка				
10.000 000	Fmin		Fmax	

7.3.1.5 Отсоединить кабели и адаптеры от стандарта частоты FS725 и анализатора спектра.

N15840/MП-2018	N1 РХІе-5840. Методика поверки	стр. 6 из 17

7.3.2 Определение неравномерности АЧХ генератора сигналов в мгновенной полосе частот

7.3.2.1 Используя адаптер SMA(m)-N(f), присоединить на выход "RF OUT" поверяемого прибора измерительный преобразователь поглощаемой мощности.

7.3.2.2 Установить на преобразователе мощности 16 усреднений.

7.3.2.3 Выполнить на панели NI-RFSG установку тонального сигнала: Device/System, Extended Ranges: Enabled Freq: F0 = 350 MHzMode: Multitone; Number of Tones: 2 Tones; Multitone Enabled 1. Frequency Offset: $\Delta F1 = 0$ Hz; Level1: -50 dBm 2. Frequency Offset: $\Delta F2 = 3.75$ MHz; Level2: 0 dBm Commit Table

RF On

7.3.3.4 Ввести на преобразователе мощности значение частоты, равное установленному значению F0 на поверяемом приборе в пункте 7.3.2.3.

Выждать до установления показания, и ввести режим относительных измерений клавишами [M2Ref], [dB]. Убедиться в том, что отсчет равен 0.00 dB.

7.3.2.5 Устанавливать на панели NI-RFSG поверяемого прибора значения отстройки частоты ΔF2, указанные в столбце 1 таблицы 7.3.2 для данного значения частоты F0 и мгновенной полосы BW. Каждый раз подтверждать установку ΔF2 (Commit Table).

Записывать отсчеты относительного уровня мощности в столбец 2 таблицы 7.3.3. Эти отсчеты равны неравномерности АЧХ.

Таблица 7.3	.2 – Неравноме	рность АЧХ генера	тора в мгновенной полосе частот	
		Измеренная		Ĺ

Отстройка частоты ΔF2	Измеренная неравномерность АЧХ, dB	Пределы допускаемых значений, dB
1	2	3
F0 = 350 MHz, BW 50 M	ſHz	
+3.75 MHz	0.00	
–12.5 MHz		
–25 MHz		± 0.9
+12.5 MHz		
+25 MHz		
F0 = 500 MHz, BW 100 I	MHz	
+3.75 MHz	0.00	
–12.5 MHz		
–25 MHz		
-37.5 MHz		
-50 MHz		±1.1
+12.5 MHz		
+25 MHz		
+37.5 MHz		1
+50 MHz		

Продолжение табли	цы 7.3.2	
1	2	3
F0 = 1 GHz, BW 200 MH	Iz	
+3.75 MHz	0.00	
–25 MHz		
-50 MHz		
-75 MHz		
-100 MHz		±2.0
+25 MHz		
+50 MHz		
+75 MHz		
+100 MHz		
F0 = 2.5 GHz, BW 200 M	ſHz	
+3.75 MHz	0.00	
-25 MHz		
-50 MHz		
-75 MHz		
-100 MHz		±1.4
+25 MHz		
+50 MHz		
+75 MHz		
+100 MHz		
F0 = 5890 MHz, BW 200	MHz	
+3.75 MHz	0.00	
–25 MHz		
-50 MHz		
-75 MHz		
-100 MHz		±2.2
+25 MHz		
+50 MHz		
+75 MHz		
+100 MHz		

7.3.2.6 Отключить режим относительных измерений на преобразователе мощности клавишей [dBm].

7.3.2.7 Выполнить действия по пунктам 7.3.2.3 – 7.3.2.6 для остальных значений частоты F0 и мгновенной полосы BW генератора поверяемого прибора, указанных в таблице 7.3.2, сохраняя остальные установки.

7.3.2.8 Отключить тональный сигнал и выход генератора на приборе: Mode: Multitone; Multitone Disabled RF Off

7.3.3 Определение погрешности установки уровня мощности генератора сигналов

7.3.3.1 Используя адаптер SMA(m)-N(f), присоединить на выход "RF OUT" поверяемого прибора измерительный преобразователь поглощаемой мощности.

7.3.3.2 Установить на преобразователе мощности 128 усреднений.

7.3.3.3 Убедиться в том, что сессия на панели NI-RFSG прибора открыта, а сессия на панели NI-RFSA закрыта.

Выполнить на панели NI-RFSG установку сигнала:

Freq: 350 MHz Level: 0 dBm RF On

7

Таблица 7.3.3 – Погрешность установки уровня

Центральная	Нижний предел	Измеренное	Верхний предел	
частота (Freq),	допускаемых	значение уровня	допускаемых	
MHz	значений, dBm	мощности, dBm	значений, dBm	
1	2	3	4	
Level 0 dBm				
350	-0.80		+0.80	
1000	-0.70		+0.70	
1500	0.70		+0.70	
1990	-0.70		+0.70	
2500	-0.70		+0.70	
3000	-0.70		+0.70	
3500	-0.85		+0.85	
3990	-0.85		+0.85	
4800	-0.85		+0.85	
5500	-0.90		+0.90	
5990	-0.90		+0.90	
Level –30 dBm				
350	-30.80		-29.20	
1000	-30.70		-29.30	
1500	-30.70		-29.30	
1990	-30.70		-29.30	
2500	-30.70		-29.30	
3000	-30.70		-29.30	
3500	-30.85		-29.15	
3990	-30.85		-29.15	
4800	-30.85		-29.15	
5500	-30.90		-29.10	
5990	-30.90		-29.10	
Level –50 dBm				
2500	-50.70		-49.30	
3000	-50.70		-49.30	
3500	-50.85		-49.15	
3990	-50.85		-49.15	
4800	-50.85		-49.15	
5500	-50.90		-49.10	
5990	-50.90		-49.10	

7.3.3.4 Ввести на преобразователе мощности значение частоты, равное установленному значению частоты на поверяемом приборе в пункте 7.3.3.3.

Записать отсчет уровня мощности на преобразователе мощности в столбец 3 таблицы 7.3.3.

7.3.3.5 Устанавливать на панели NI-RFSG поверяемого прибора следующие значения частоты, указанные в столбце 1 таблицы 7.3.3 для данных значений уровня сигнала.

Устанавливать соответствующие значения частоты на преобразователе мощности. Записывать отсчеты преобразователя мощности в столбец 3 таблицы 7.3.3.

7.3.3.6 Выполнить действия по пунктам 7.3.3.3 – 7.3.3.5 для остальных значений уровня Level, указанных в таблице 7.3.3.

7.3.3.7 Отключить выход генератора на панели NI-RFSG прибора: RF Off

7.3.3.8 Отсоединить преобразователь мощности от поверяемого прибора.

7.3.4 Определение уровня фазовых шумов генератора

7.3.4.1 Используя адаптер MMPX(m)-SMA(f), соединить кабелем SMA(m) вход синхронизации "REF IN" поверяемого прибора с выходом "Ref Out" анализатора спектра.

Используя адаптер SMA(f)-N(m), соединить кабелем SMA(m) выход "RF OUT" поверяемого прибора с входом "RF In" анализатора спектра.

7.3.4.2 Убедиться в том, что сессия на панели NI-RFSG прибора открыта, а сессия на панели NI-RFSA закрыта.

Сделать установки на панели NI-RFSG прибора: Device/System, Reference Clock, Ref Clk Source: Ref In Freq: 1 GHz Level: 0 dBm RF On

7.3.4.3 Сделать установки на анализаторе спектра: Reference Level 10 dBm
Center Freq 1 GHz, Span 50 kHz, RBW 1 kHz
of Averages 100
Marker, Peak Search, Marker Delta
Убедиться в том, что отсчет дельта-маркера равен 0.00 dB.

7.3.4.4 Найти на анализаторе спектра пик развертки, и ввести дельта-маркер.

7.3.4.5 Переместить дельта-маркер анализатора спектра вправо на 20 kHz от центральной частоты, и зафиксировать отсчет дельта-маркера как ΔМ1.

7.3.4.6 Вычислить уровень фазовых шумов PN, приведенный к полосе 1 Hz, по формуле PN $[dBc/Hz] = \Delta MI - 10 \cdot log(RBW/1 Hz) = \Delta M1 - 30 dB$ Записать вычисленное значение уровня фазовых шумов в столбец 2 таблицы 7.3.4.

7.3.4.7 Отключить дельта-маркер.

7.3.4.8 Выполнить действия по пунктам 7.3.4.2 – 7.3.4.7, устанавливая указанные в столбце 1 таблицы 7.3.4 значения частоты Freq на панели NI-RFSG поверяемого прибора, и вводя соответствующие значения центральной частоты Center Freq на анализаторе спектра.

NII5840/MIT_2018	NI DVIO 5940 More rune Ton entre	10	17
113040/1111-2010	П гле-3840. Методика поверки	стр. 10 из	17

Центральная частота, GHz	Измеренный уровень фазовых шумов, dBc/Hz	Верхний предел допускаемых значений, dBc/Hz
1	2	3
1.0		-102
2.4		-102
3.0		-102
4.4		-96
5.8		-96

Таблица 7.3.4 – Уровень фазовых шумов генератора при отстройке 20 kHz

7.3.5 Определение уровня фазовых шумов анализатора

7.3.5.1 Используя адаптеры MMCX(m)-SMA(f) и SMA(m)-BNC(f), соединить кабелем BNC(m) вход синхронизации "REF IN" поверяемого прибора с выходом "Ref Out" генератора сигналов.

Используя адаптер SMA(f)-N(m), соединить кабелем SMA(m) выход "RF OUT" генератора сигналов с входом "RF IN" поверяемого прибора.

7.3.5.2 Закрыть сессию генератора на панели NI-RFSG прибора: Device/System, Close Session Отрыть сессию анализатора на панели NI-RFSA прибора: Device/System, Open Session

7.3.5.3 Сделать установки на генераторе сигналов: Amptd: 0 dBm Freq: 1 GHz RF On

7.3.5.4 Сделать установки на панели NI-RFSA прибора: Preset Device/System, Freq Ref Src, Ref In Amptd, Ref Level: +5 dBm Freq: 1 GHz Span: 50 kHz BW, RBW: 1 kHz FFT window: Flat Top Trace/Detector, Average, Number of averages: 100

7.3.5.5 Найти пик сигнала клавишей Peak Search на панели NI-RFSA прибора, и ввести дельта-маркер:

Marker, Delta Убедиться в том, что отсчет дельта-маркера равен 0.00 dB.

7.3.5.6 Переместить маркер вправо на 20 kHz от центральной частоты, и зафиксировать отсчет дельта-маркера как ∆М1.

7.3.5.7 Вычислить уровень фазовых шумов PN, приведенный к полосе 1 Hz, по формуле PN $[dBc/Hz] = \Delta MI - 30 dB$

Записать вычисленное значение уровня фазовых шумов в столбец 2 таблицы 7.3.5.

7.3.5.8 Отключить дельта-маркер: Marker, Normal

Таблица 7.3.5 – Уровень фазовых шумов гетеродина анализатора
при отстройке 20 kHz

Центральная частота, GHz	Уровень фазовых шумов, dBc/Hz	Верхний предел допускаемых значений, dBc/Hz
1	2	3
1.0		-102
2.4		-102
3.0		-102
4.4		-96
5.8		-96

7.3.5.9 Выполнить действия по пунктам 7.3.5.4 – 7.3.5.8, устанавливая указанные в столбце 1 таблицы 7.3.5 значения частоты на генераторе сигналов и на панели NI-RFSA прибора.

7.3.5.10 Отключить выход на генераторе сигналов: RF Off

7.3.6 Определение погрешности измерения мощности анализатором сигналов

7.3.6.1 Используя адаптеры MMPX(m)-SMA(f) и SMA(m)-BNC(f), соединить кабелем BNC(m) выход синхронизации "Ref Out" генератора сигналов с входом синхронизации "REF IN" поверяемого прибора.

Присоединить входной разъем кабеля ваттметра проходящей СВЧ мощности к выходу "RF OUT" генератора сигналов.

Присоединить выходной разъем ваттметра проходящей СВЧ мощности непосредственно к входу "RF IN" поверяемого прибора, используя адаптер SMA(m)-N(f).

7.3.6.2 Сделать установки на панели NI-RFSA поверяемого прибора: Preset
Amptd, Ref Level: +30 dBm
Freq: первое значение частоты из столбца 1 таблицы 7.3.6 для Input Level 0 dBm
Span: Zero Span
BW, RBW: 100 kHz
VBW: Manual 1 kHz
Trace/Detector, Average, Number of averages: 100

7.3.6.3 Сделать установки на генераторе сигналов:

- Amptd: +6 dBm

- Freq: первое значение частоты из столбца 1 таблицы 7.3.6 для Input Level 0 dBm

7.3.6.4 Ввести на ваттметре количество усреднений 128 и значение частоты, установленное в пунктах 7.3.6.3.

7.3.6.5 Подстроить уровень сигнала на генераторе сигналов так, чтобы отсчет ваттметра был равен (0.00 ±0.01) dBm.

7.3.6.6 Нажать клавишу Peak Search на панели NI-RFSA поверяемого прибора, и после установления показаний записать отсчет маркера в столбец 3 таблицы 7.3.6 для Input Level 0 dBm.

7.3.6.7 Устанавливать значения центральной частоты на панели NI-RFSA поверяемого прибора, соответствующие значения частоты на генераторе сигналов и ваттметре, указанные в столбце 1 таблицы 7.3.6 для Input Level 0 dBm.

Выполнять действия по пунктам 7.3.6.5, 7.3.6.6 для каждого значения частоты.

N15840/МП-2018	NI PXIe-5840. Методика поверки	стр. 12 из 17

	Нижний предел	Измеренное	Верхний предел
Частота	допускаемых	значение уровня,	допускаемых
	значений, dBm	dBm	значений. dBm
1	2	3	4
Input Level 0 dBm; R	eference Level +30 dBn	n	· · · · · · · · · · · · · · · · · · ·
20 MHz	-0.75		+0.75
110 MHz	-0.75		+0.75
200 MHz	-0.80		+0.80
499 MHz	-0.80		+0.80
1.0 GHz	-0.70		+0.70
1.49 GHz	-0.70		+0.70
1.7 GHz	-0.75		+0.75
2.29 GHz	-0.75		+0.75
2.5 GHz	-0.65		+0.65
2.89 GHz	-0.65		+0.65
3.5 GHz	-0.75		+0.75
4.0 GHz	-0.75		+0.75
4.79 GHz	-0.75		+0.75
5.4 GHz	-0.90		+0.90
5.99 GHz	-0.90		+0.90
Input Level –20 dBm;	Reference Level 0 dBm	l I	
20 MHz	-20.75		+19.25
110 MHz	-20.75		+19.25
200 MHz	-20.80		+19.20
499 MHz	-20.80		+19.20
1.0 GHz	-20.70		+19.30
1.49 GHz	-20.70		+19.30
1.7 GHz	-20.75		+19.25
2.29 GHz	-20.75		+19.25
2.5 GHz	-20.65		+19.35
2.89 GHz	-20.65		+19.35
3.5 GHz	-20.75		+19.25
4.0 GHz	-20.75		+19.25
4.79 GHz	-20.75		+19.25
5.4 GHz	-20.90		+19.10
5.99 GHz	-20.90		+19.10
Input Level –35 dBm;	Reference Level -15 dI	Bm	
20 MHz	-35.75		+34.25
110 MHz	-35.75		+34.25
200 MHz	-35.80		+34.20
499 MHz	-35.80		+34.20
1.0 GHz	-35.70		+34.30
1.49 GHz	-35.70		+34.30
1.7 GHz	-35.75		+34.25
2.29 GHz	-35.75		+34.25
2.5 GHz	-35.65		+34.35
2.89 GHz	-35.65		+34.35
3.5 GHz	-35.75		+34.25
4.0 GHz	-35.75		+34.25
4.79 GHz	-35.75		+34.25
5.4 GHz	-35.90		+34.10
5.99 GHz	-35.90		+34.10

Таблица 7.3.6 – Погре	ешность измерения мо	ощности анализато	ром сигналов
-----------------------	----------------------	-------------------	--------------

NI5840/МП-2018

•

7.3.6.8 Сделать установки на генераторе сигналов: Amptd: –14 dBm

Freq: первое значение частоты из столбца 1 таблицы 7.3.6 для Input Level -20 dBm

7.3.6.9 Сделать установки на панели NI-RFSA поверяемого прибора: Amptd, Ref Level: 0 dBm

Freq: первое значение частоты из столбца 1 таблицы 7.3.6 для Input Level –20 dBm

7.3.6.10 Ввести на ваттметре значение частоты, установленное в пункте 7.3.6.8.

7.3.6.11 Подстроить уровень сигнала на генераторе сигналов так, чтобы отсчет ваттметра был равен (-20.00 ±0.01) dBm.

7.3.6.12 Найти пик сигнала клавишей Peak Search на панели NI-RFSA поверяемого прибора, и после установления показаний записать отсчет маркера в столбец 3 таблицы 7.3.6 для Input Level –20 dBm.

7.3.6.13 Устанавливать значения центральной частоты на панели NI-RFSA поверяемого прибора, соответствующие значения частоты на генераторе сигналов и ваттметре, указанные в столбце 1 таблицы 7.3.6 для Input Level –20 dBm.

Выполнять действия по пунктам 7.3.6.11, 7.3.6.12 для каждого значения частоты.

7.3.6.14 Сделать установки на генераторе сигналов:

Amptd: -29 dBm

Freq: первое значение частоты из столбца 1 таблицы 7.3.6 для Input Level –35 dBm

7.3.6.15 Сделать установки на панели NI-RFSA поверяемого прибора:

- Amptd, Ref Level: -15 dBm

- Freq: первое значение частоты из столбца 1 таблицы 7.3.6 для Input Level –35 dBm

7.3.6.16 Ввести на ваттметре значение частоты, установленное в пункте 7.3.6.14.

7.3.6.17 Подстроить уровень сигнала на генераторе сигналов так, чтобы отсчет ваттметра был равен (-35.00 ±0.01) dBm.

7.3.6.18 Найти пик сигнала клавишей Peak Search на панели NI-RFSA поверяемого прибора, и после установления показаний записать отсчет маркера в столбец 3 таблицы 7.3.6 для Input Level –35 dBm.

7.3.6.19 Устанавливать значения центральной частоты на панели NI-RFSA поверяемого прибора, соответствующие значения частоты на генераторе сигналов и ваттметре, указанные в столбце 1 таблицы 7.3.6 для Input Level –35 dBm.

Выполнять действия по пунктам 7.3.6.17, 7.3.6.18 для каждого значения частоты.

7.3.6.20 Отключить выход генератора сигналов E8257D RF Off

7.3.7 Определение неравномерности АЧХ анализатора сигналов в мгновенной полосе частот

7.3.7.1 Оставить схему соединения оборудования по предыдущей операции, как указано в пункте 7.3.6.1.

7.3.7.2 Сделать установки на панели NI-RFSA поверяемого прибора: Preset
Amptd, Ref Level: +10 dBm
Span: первое значение, указанное в таблице 7.3.7
Freq: значение Center Freq из таблицы 7.3.7 для установленного значения Span
BW, RBW: 10 kHz
FFT window: Flat Top
Trace/Detector, Average, Number of averages: 10

7.3.7.3 Сделать установки на генераторе сигналов: Amptd: +6 dBm Freq: первое значение, указанное в столбце 1 таблицы 7.3.7 для данных значений Center Freq и Span RF On

7.3.7.4 Ввести на ваттметре количество усреднений 16 и значение частоты, установленное на панели NI-RFSA прибора.

7.3.7.5 Подстроить уровень сигнала на генераторе сигналов так, чтобы отсчет ваттметра был равен (0.00 ±0.02) dBm.

7.3.7.6 Найти пик сигнала клавишей Peak Search на панели NI-RFSA прибора и после установления показаний записать отсчет маркера в столбец 2 таблицы 7.3.7 для текущих значений Freq и Span.

7.3.7.7 Устанавливать на генераторе сигналов значения частоты Freq, указанные в столбце 1 таблицы 7.3.7 для данных значений Center Freq и Span.

Подстраивать, при необходимости, уровень на генераторе сигналов, как указано в пункте 7.3.7.5 (можно без ввода на ваттметре точного значения частоты).

Нажимать на панели NI-RFSA прибора клавишу Peak Search, и после установления показаний записывать отсчет маркера в столбец 2 таблицы 7.3.7.

7.3.7.8 Рассчитать неравномерность АЧХ для данной центральной частоты Center Freq как $\Delta P = P(F) - P0$

РО – отсчет маркера на центральной частоте, P(F) – отсчет маркера на данной частоте. Записать вычисленные значения ΔР в столбец 3 таблицы 7.3.7.

7.3.7.9 Сделать установки на панели NI-RFSA поверяемого прибора:

Span: следующее значение, указанное в таблице 7.3.7

Freq: значение Center Freq из таблицы 7.3.7 для установленного значения Span

7.3.7.10 Ввести на генераторе сигналов первое значение частоты Freq, указанное в столбце 1 таблицы 7.3.7 для данных значений Center Freq и Span

7.3.7.11 Выполнить действия по пунктам 7.3.7.4 – 7.3.7.8 для данных значений Center Freq и Span, указанных в таблице 7.3.7.

7.3.7.12 Выполнить действия по пунктам 7.3.7.4 – 7.3.7.11 для остальных значений Center Freq и Span, указанных в таблице 7.3.7.

7.3.7.13 Отсоединить ваттметр от поверяемого прибора.

N15840/МП-2018	NI PXIe-5840. Метолика поверки	стр. 15 из 17
	таттие во то. плетодика поверки	

٦

<u>Таблица</u> 7.3.7 – По Частота	Таолица 7.5.7 – Перавномерность А ча анализатора в міновенной полосе част Частота Отсчет Прелецы			
генератора	маркера Р.	Неравномерность	пределы лопускаемых	
Freq	dBm	AЧX, dB	значений. dB	
1	2	3	4	
Span 41 MHz; Center	Freq 150 MHz		···· ·	
150 MHz		-		
140 MHz				
130 MHz			± 0.5	
160 MHz				
170 MHz				
Span 81 MHz; Center	Freq 1 GHz			
1000 MHz		-		
990 MHz				
980 MHz				
970 MHz				
960 MHz			± 0.5	
1010 MHz				
1020 MHz				
1030 MHz				
1040 MHz				
Span 201 MHz; Cente	r Freq 3 GHz			
3000 MHz		-		
2980 MHz				
2960 MHz				
2940 MHz				
2920 MHz				
2900 MHz			±1.1	
3020 MHz				
3040 MHz				
3060 MHz	· · · · · · · · · · · · · · · · · · ·			
3080 MHz				
3100 MHz				
Span 201 MHz; Cente	r Freq 5.9 GHz			
5800 MHz		-		
5780 MHz				
5760 MHz				
5740 MHz				
5720 MHz	• · · · · · · · · · · · · · · · · · · ·			
5700 MHz			±1.1	
5820 MHz				
5840 MHz				
5860 MHz				
5880 MHz				
5900 MHz				

727 11 T

7.3.7.14 Отключить выход генератора сигналов: RF Off

ПОВЕРКА ЗАВЕРШЕНА

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:

полное наименование аккредитованной на право поверки организации;

- номер и дата протокола поверки

- наименование и обозначение поверенного средства измерения

- заводской (серийный) номер;

- обозначение документа, по которому выполнена поверка;

- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;

- температура и влажность в помещении;

- фамилия лица, проводившего поверку;

 результаты определения метрологических характеристик по форме таблиц раздела 7 настоящего документа.

Допускается не оформлять протокол поверки отдельным документом, а результаты поверки (метрологические характеристики) указать на оборотной стороне свидетельства о поверке.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

Ведущий инженер по метрологии ЗАО «АКТИ-Мастер» Е.В. Маркин