

Закрытое Акционерное Общество «АКТИ-Мастер» АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА

> 127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

УТВЕРЖДАЮ

Генеральный директор ЗАО «АКТИ-Мастер»

M. В.В. Федулов « 31 » августа 2018 г.

Государственная система обеспечения единства измерений

Генераторы импульсов PSPL2600С

Методика поверки PSPL2600C/MП-2018

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

has Д.Р. Васильев

г. Москва 2018 Настоящая методика поверки распространяется на генераторы импульсов PSPL2600C (далее – генераторы), изготавливаемые компанией "Tektronix, Inc.", США, и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

	Номер	Проведение операции			
Наименование операции	пункта	при по	оверке		
	методики	первичной	периодической		
Внешний осмотр и подготовка к поверке	6	да	да		
Опробование	7.1	да	да		
Проверка диапазона амплитуды напряжения	7.0				
выходных импульсов	1.2	да	да		
Проверка диапазона длительности выходных	7.2				
импульсов	1.3	да	да		
Определение длительности фронтов выходных	7.4				
импульсов	/.4	да	да		
Определение параметров искажений выходных	7.5		· · · · · · · · · · · · · · · · · · ·		
импульсов	7.5	да	да		
Проверка амплитуды напряжения и времени	7.6				
задержки триггеров выхода	7.6	да	да		

Таблица 1 – Операции поверки

1.2 Если поверяемый генератор используется в определенных режимах, по запросу пользователя поверка может быть проведена в этих режимах, при этом должна быть сделана соответствующая запись в свидетельстве о поверке.

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых генераторов с требуемой точностью.

2.2 Средства поверки должны быть исправны, средства измерений поверены и иметь документы о поверке.

Nº	Наименование средства поверки	Номер пункта методики	Рекомендуемый тип средства поверки, регистрационный номер реестра
		СРЕДСТЕ	ВА ИЗМЕРЕНИЙ
1	Осциллограф	7.1 – 7.8	Осциллограф цифровой Tektronix DPO7254C; per. № 53104-13
2	Генератор импульсов	7.5	Генератор сигналов сложной формы со сверхнизким уровнем искажений Stanford Research Systems DS360; рег. № 45344-10
	ВСПОМОГА	АТЕЛЬНЫЕ	СРЕДСТВА И АКСЕССУАРЫ
1	Аттенюатор 20 ±0.5 dB	7.2 - 7.8	Аттенюатор коаксиальный Agilent 8491В-020
2	Кабель соединительный BNC(m-m), 2 шт.	7.2 – 7.8	-
3	Адаптер SMA(m)-N(f)	7.2 - 7.8	-
4	Адаптер N(m)-BNC(f)	7.2 - 7.8	-

Таблица 2 – Средства поверки

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области радиотехнических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

4.2 Во избежание несчастного случая и для предупреждения повреждения генератора необходимо обеспечить выполнение следующих требований:

- подсоединение генератора к сети должно производиться с помощью сетевого кабеля из комплекта генератора;

- заземление генератора и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;

- присоединения генератора и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);

- запрещается работать с генератором при снятых крышках или панелях;

- запрещается работать с генератором в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с генератором в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±5) °С;

- относительная влажность воздуха от 30 до 70 %;

- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов, отсутствие механических повреждений корпуса и ослабления крепления элементов генератора;

- сохранность органов управления, четкость фиксации их положений;

- правильность маркировки и комплектность генератора.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого генератора, его направляют в сервисный центр для ремонта.

6.2 Подготовка к поверке

6.2.1 Перед началом работы следует изучить руководство по эксплуатации генератора, а также руководства по эксплуатации применяемых средств поверки.

6.2.3 Подсоединить генератор и средства поверки к сети электропитания 220 V; 50 Hz. Включить питание генератора и средств поверки.

6.2.4 Перед началом выполнения операций средства поверки и генератор должны быть выдержаны во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева генератора 30 min.

Общие указания по проведению поверки

В процессе выполнения операций результаты заносятся в протокол поверки.

Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа.

Если заказчиком поверки (пользователем) не установлены требования по записи измеренных значений метрологических характеристик, допускается записывать в таблицах качественные результаты (соответствует / не соответствует) определения метрологических характеристик.

При получении отрицательных результатов по какой-либо операции необходимо повторить операцию. При повторном отрицательном результате генератор следует направить в сервисный центр для проведения регулировки или ремонта.

7.1 Опробование

7.1.1 Выполнить соединения оборудования.

Присоединить на разъем генератора "45 V Pulse Output" последовательно адаптер SMA(m)-N(f), аттенюатор 20 dB и адаптер N(m)-BNC(f).

Соединить кабелем BNC(m-m) выход адаптера N(m)-BNC(f) с разъемом канала "CH1" осциллографа.

7.1.2 Сделать на генераторе установки импульсов положительной полярности: Attenuation 20 dB (переключатель Coarse "20", переключатель Fine "0") Rep Rate 100 kHz (переключатель Range "100", ручка Fine "1.0х") Duration 100 ns (крайнее положение ручки по часовой стрелке) Positive

7.1.3 Сделать установки на осциллографе: Vertical Setup: CH1 Impedance 50 Ω, Scale 200 mV/div Horizontal Setup: Scale 5 µs/div Trigger CH1 Slope Pos, Level Set to 50 %

7.1.4 Убедиться в том, что на дисплее осциллографа наблюдаются импульсы положительной полярности с амплитудой (400...500) mV и периодом повторения 10 µs, как показано на рисунке 7.1.1.

7.1.5 Установить развертку на осциллографе 20 ns/div.

При этом на дисплее осциллографа должен наблюдаться импульс длительностью 100 ns. Поворачивать ручку Duration на генераторе против часовой стрелки до упора, наблюдая уменьшение длительности импульса.

Вернуть ручку Duration на генераторе в крайнее положение по часовой стрелке.

7.1.6 Установить развертку на осциллографе 200 µs/div.

Поворачивать ручку Rep Rate Fine против часовой стрелки до положения "0.1x".

Убедиться в том, что на дисплее осциллографа наблюдается уменьшение частоты (увеличение периода) повторения импульсов.

7.1.7 Установить развертку на осциллографе 1 ms/div.

Устанавливать переключателем Rep Rate Range меньшие значения частоты повторения импульсов.

Убедиться в том, что на дисплее осциллографа наблюдается уменьшение частоты (увеличение периода) повторения импульсов.

7.1.8 Вернуть настройки генератора и осциллографа по пунктам 7.1.2, 7..1.3.

e Edit Vertic	ar Henzacq	ng j Display	Cursors	Measure N	aass sath	музсаре	Amalyze	Onintes Help		tri mana gentama gentiki		(0	K (1997)
						Y							
· ·													
			110 410										
						Administra							
n na se	an ný an an firm an an air an a nafa	มสาราช)ายระบบรู้สามารถสารการการเป็น	una maria in tanah un	urouvon nener einen eine ersode	en 1. reĝine 19 ap 19 manon 14.	. ep	n er man er fan sen sen sjoner.	танораан жиун жиндин к _т ороол		ng anal san nancason o	endermente intro consignado com	*	anantel al Congress anjaran
<u>and an inclusion of a second </u>	an in the second se	ana dan dan kara						ajar inadawa	i.				
200mV	/div	50Ω ⁴ γ⁄2.5G						A CONT	228mV		5.0µs/di	v 20.0MS/s	50.0ns/p1
	Value	Mean	Min	Max	St Dev	Count	Info	Horz Diy	: 0.0s		- ¹ Run	Average:	128
Ct Rise	77.75ns	77.333681n	74.03n	79.45n	743.9p	1.032k	0				131 840	acqs	RL:1.0k
CEL Fall	83.17ns	82.065165n	78.83n	83.78n	593.7p	1.032k	Ŏ				Auto .	January 01, 20	02 06:39:
💽 Pos W	id 96.87ns	98.375711n	95.33n	100.3n	738.2p	1.032k	Ø				····		
Reg W	lid 10.61µs	10.608919µ	10.6µ	10.61µ	1.086n	1.032k	0						
🕼 Ampl*	479.0mV	479.13942m	478.0m	481.0m	405.1µ	1.032k	0						

7.1.9 Перевести на генераторе переключатель полярности в положение Negative.

7.1.10 Установить триггер осциллографа: Trigger CH1 Slope Neg, Level Set to 50 %.

7.1.11 Убедиться в том, что на дисплее осциллографа наблюдаются импульсы отрицательной полярности с амплитудой (400...500) mV и периодом повторения 10 µs, как показано на рисунке 7.1.2.

7.1.12 Перевести переключатель частоты Rep Rate Range на генераторе в положение Ext.

7.1.13 Соединить кабелем BNC(m-m) разъем "Sync Output" генератора DS360 с разъемом Ехт поверяемого генератора.

7.1.14 Установить на генераторе DS360 амплитуду 1 Vp-р и частоту 100 kHz.

7.1.15 Убедиться в том, что на дисплее осциллографа наблюдаются импульсы отрицательной полярности с амплитудой (400...500) mV и периодом повторения 10 µs, как показано на рисунке 7.1.2.

7.1.16 Отсоединить кабель от разъема Ext поверяемого генератора.

7.1.17 При положительных результатах опробования перейти к операции 7.2.

File Est	Vertscas	Horiz/Acq	Trig Display	Cursors	Measure 1	wask (Math ,	MyScope	Analyza	Utilities (Hel;		·		lek		X
.		8 1 - Je ²⁴⁹ 0 - Juan - Hay B		agaanaa gabiitiiti	ማሪያቸዋታት ለካታቸው የተራስ አንስ አንስ	Material	· · · · · · · · · · · · · · · · · · ·	****				and a subscription of the		en de la Maria	
														i i	
	100 - 100 -													-	
										li.					
							· · · · · · · ·								
5															
(C)	200mV/di	v !	50.0 ⁴ w2.5G		ei oa maranda en e	anga an dheastann	i			-208mV	5.0	us/div 20	0.0MS/s	50.0m	s/pt
		Value	Mean	Min	Max	St Dev	Count	info	Horz Dly:	0.0s	Ru	з ,	Average:12	28	-
(in the second s	Rise	80.13ns	80.618454n	77.67n	82.21n	711.6p	259.0	Ø			33	IS2 acqs		RL:1.0k	
6.61	Fall	75.52ns	76.2637881	72.75n	78.32n	984.6p	259.0	Q I			Au	o Janua	iry 01, 2003	2 06	\$0:35
a di	Pos Wid Neg Wid	10.61µs	10.603584µ 98.362441n	10.610 96.160	10.61µ	1.126n	259.0	0							
6570	Ampi*	449.7mV	449.80836m	449.0m	451.1m	602.7µ	259.0	ŏ							
·															

7.2 Проверка диапазона амплитуды напряжения выходных импульсов

7.2.1 Установить на генераторе импульсы положительной полярности с минимальной амплитудой:

Attenuation 70 dB (переключатель Coarse "60", переключатель Fine "10") Rep Rate 1 kHz (переключатель Range "1", ручка Fine "1.0х") Duration ≈5 ns Positive

7.2.2 ВНИМАНИЕ: перед соединением оборудования проверить установку Attenuation на генераторе по пункту 7.2.1 во избежание недопустимой перегрузки входа осциллографа!

Используя адаптер SMA(m)-BNC(f), соединить кабелем BNC(m-m) разъем генератора "45 V Pulse Output" с разъемом канала "CH1" осциллографа.

7.2.3 Сделать установки на осциллографе: Vertical Setup: CH1 Impedance 50 Ω, Scale 5 mV/div Horizontal Setup: Scale 2.5 ns/div Trigger CH1 Slope Pos, Level Set to 50 % Acquisition Average 32 Measure: CH1 Amplitude

7.2.4 Наблюдать импульс положительной полярности на дисплее осциллографа. Подстроить длительность импульса на генераторе потенциометром Duration ≈5 ns по дисплею осциллографа.

Записать измеренное значение амплитуды импульса в столбец 2 таблицы 7.2.

7.2.5 Перевести на генераторе переключатель полярности в положение Negative.

7.2.6 Установить триггер осциллографа: Trigger CH1 Slope Neg, Level Set to 50 %.

7.2.7 Наблюдать импульс отрицательной полярности на дисплее осциллографа. Записать измеренное значение амплитуды импульса в столбец 2 таблицы 7.2.

7.2.8 Выполнить соединения оборудования с использованием аттенюатора 20 dB, как указано в пункте 7.1.1.

7.2.9 Установить на осциллографе: Vertical 1 V/div.

7.2.10 Установить на генераторе импульсы положительной полярности с максимальной амплитудой:

Attenuation 0 dB (переключатель Coarse "0", переключатель Fine "0") Positive

7.2.11 Установить триггер осциллографа: Trigger CH1 Slope Pos, Level Set to 50 %.

При необходимости для полного отображения вершины импульса опустить изображение сигнала потенциометром "CH1 Vertical Position" на осциллографе.

Вычислить амплитуду импульса Ua(+) = 10·Uosc, где Uosc – отсчет амплитуды на осциллографе.

Записать значение амплитуды импульса в столбец 2 таблицы 7.2.

7.2.12 Установить на генераторе импульсы отрицательной полярности переключателем Negative.

7.2.13 Установить триггер осциллографа: Trigger CH1 Slope Neg, Level Set to 50 %.

При необходимости полного отображения вершины импульса поднять изображение сигнала потенциометром "CH1 Vertical Position" на осциллографе.

Вычислить амплитуду импульса Ua(-) = 10·Uosc, где Uosc – отсчет амплитуды на осциллографе.

Записать значение амплитуды импульса в столбец 2 таблицы 7.2.

Таблица 7.2 – Амплитуда выходных импульсов

Полярность импульсов	Измеренное значение амплитуды	Пределы допускаемых значений
1	2	3
	Минимальная амплит	уда
положительная		14 ±2 mV
отрицательная		$14 \pm 2 \text{ mV}$
	Максимальная амплит	гуда
положительная		не менее 45 V
отрицательная		не менее 40 V

7.3 Проверка диапазона длительности выходных импульсов

Схема соединения оборудования – по пункту 7.1.1.

7.3.1 Сделать установки на осциллографе: Vertical Setup: CH1 Impedance 50 Ω, Scale 1 V/div Horizontal Setup: Scale 2.5 ns/div Acquisition Average 32 Measure: CH1 Positive Width, Negative Width

7.3.2 Установить на генераторе импульсы положительной полярности с максимальной амплитудой:

Attenuation 0 dB (переключатель Coarse "0", переключатель Fine "0") Rep Rate 1 kHz (переключатель Range "1", ручка Fine "1.0х") Duration ≈5 ns Positive

7.3.3 Установить триггер осциллографа: Trigger CH1 Slope Pos, Level Set to 50 %. При необходимости для полного отображения вершины импульса на осциллографе сместить изображение сигнала регулировкой положения по вертикали.

7.3.4 Наблюдая форму импульса на дисплее осциллографа, плавно уменьшать длительность импульсов на генераторе потенциометром Duration.

Зафиксировать положение, при котором наблюдается уменьшение амплитуды импульса примерно на 20 %, и записать отсчет длительности на осциллографе Positive Width в столбец 2 таблицы 7.3.

7.3.5 Установить на генераторе максимальную длительность импульсов поворотом потенциометра Duration в крайнее положение по часовой стрелке.

7.3.6 Установить развертку на осциллографе: Horizontal Setup: Scale 50 ns/div. Записать отсчет длительности на осциллографе Positive Width в столбец 2 таблицы 7.3.

7.3.7 Установить на генераторе короткие импульсы отрицательной полярности: Duration ≈ 5 ns Negative

7.3.8 Сделать установки на осциллографе: Horizontal Setup: Scale 2.5 ns/div Trigger CH1 Slope Slope Neg, Level Set to 50 %

7.3.9 Выполнить действия по пунктам 7.3.4 – 7.3.6 для импульсов отрицательной полярности, фиксируя и записывая отсчеты Negative Width на осциллографе.

Длительность импульсов	Измеренное значение длительности	Пределы допускаемых значений
1	2	3
И	мпульсы положительной п	олярности
минимальная		не более 1 ns
максимальная		100 ±2 ns
V	Імпульсы отрицательной по	олярности
минимальная		не более 1 ns
максимальная		не менее 95 ns

Таблица 7.3 – Длительность выходных импульсов

7.4 Определение длительности фронтов выходных импульсов

Схема соединения оборудования – по пункту 7.1.1.

7.4.1 Сделать установки на осциллографе: Vertical Setup: CH1 Impedance 50 Ω, Scale 1 V/div Horizontal Setup: Scale 500 ps/div Acquisition Average 32 Measure: CH1 Rise Time, Fall Time

7.4.2 Установить на генераторе импульсы положительной полярности с максимальной амплитудой:

Attenuation 0 dB (переключатель Coarse "0", переключатель Fine "0") Rep Rate 1 kHz (переключатель Range "1", ручка Fine "1.0х") Duration ≈5 ns Positive

7.4.3 Установить триггер осциллографа: Trigger CH1 Slope Pos, Level Set to 50 %. При необходимости для полного отображения импульса на осциллографе сместить изображение сигнала регулировками положения по вертикали и горизонтали.

Записать отсчет длительности переднего фронта импульсов положительной полярности в столбец 2 таблицы 7.4.

7.4.4 Установить триггер осциллографа: Trigger CH1 Slope Neg, Level Set to 50 %. При необходимости для полного отображения импульса на осциллографе сместить изображение сигнала регулировками положения по вертикали и горизонтали.

Записать отсчет длительности заднего фронта импульсов положительной полярности в столбец 2 таблицы 7.4.

7.4.5 Установить переключатель полярности импульсов на генераторе в положение Negative.

7.4.6 Установить триггер осциллографа: Trigger CH1 Slope Neg, Level Set to 50 %. При необходимости для полного отображения импульса на осциллографе сместить изображение сигнала регулировками положения по вертикали и горизонтали.

Записать отсчет длительности переднего фронта импульсов отрицательной полярности в столбец 2 таблицы 7.4.

7.4.7 Установить триггер осциллографа: Trigger CH1 Slope Pos, Level Set to 50 %.

Записать отсчет длительности заднего фронта импульсов отрицательной полярности в столбец 2 таблицы 7.4.

Длительность фронтов импульсов	Измеренное значение длительности фронта	Пределы допускаемых значений
1	2	3
I	Импульсы положительной п	олярности
передний фронт		не более 500 ps
задний фронт		не менее 1800 ps
]	Импульсы отрицательной по	олярности
передний фронт		не более 570 ps
задний фронт		не менее 1870 ps

Таблица 7.4 – Длительность фронтов выходных импульсов

7.5 Определение параметров искажений выходных импульсов

Схема соединения оборудования – по пункту 7.1.1.

0

7.5.1 Установить на генераторе импульсы положительной полярности с максимальной амплитудой и длительностью:

Attenuation 0 dB (переключатель Coarse "0", переключатель Fine "0") Rep Rate 1 kHz (переключатель Range "1", ручка Fine "1.0х") Duration 100 ns (крайнее положение ручки по часовой стрелке) Positive

7.5.2 Сделать установки на осциллографе:
Vertical Setup: CH1 Impedance 50 Ω, Scale 1 V/div Horizontal Setup: Scale 20 ns/div Acquisition Average 32 Measure: CH1 Amplitude
Trigger CH1 Slope Pos, Level Set to 50 %

7.5.3 Поместить изображение сигнала посередине дисплея осциллографа регулировками положения по вертикали и горизонтали, как показано на рисунке 7.5.1.

7.5.4 Ввести на осциллографе горизонтальные курсоры (Cursors: H Bars).

7.5.5 Поместить курсор V1 на нулевую линию, курсор V2 на вершину выброса в паузе перед передним фронтом импульса.

Вычислить относительный выброс как [(ΔV/Ampl)·100 %], где ΔV – отсчет разности значений курсоров, Ampl – отсчет амплитуды импульса, записать полученное значение в столбец 2 таблицы 7.5.

7.5.6 Поместить курсор V1 на среднюю линию плоской части вершины импульса, курсор V2 на пик выброса на вершине за передним фронтом импульса.

Вычислить относительный выброс как указано в пункте 7.5.5, записать полученное значение в столбец 2 таблицы 7.5.

7.5.7 Поместить курсор V1 на нижнюю линию плоской части вершины импульса, курсор V2 на верхнюю линию плоской части вершины импульса.

Вычислить неравномерность вершины как указано в пункте 7.5.5, записать полученное значение в столбец 2 таблицы 7.5.

7.5.8 Поместить курсор V1 на нулевую линию, курсор V2 на пик паразитного импульса, который отстоит примерно на 115...120 ns от переднего фронта импульса.

Вычислить амплитуду паразитного импульса как указано в пункте 7.5.5, записать полученное значение в столбец 2 таблицы 7.5.

7.5.9 Установить на генераторе ручкой Duration длительность импульса ≈20 ns и подстроить значение длительности по дисплею осциллографа. При этом должен наблюдаться сигнал, показанный на рисунке 7.5.2.

7.5.10 Поместить курсор V1 на нулевую линию, курсор V2 на пик паразитного импульса, который отстоит примерно на 115...120 ns от переднего фронта импульса.

Вычислить амплитуду паразитного импульса как указано в пункте 7.5.5, записать полученное значение в столбец 2 таблицы 7.5.

7.5.11 Установить на генераторе импульсы отрицательной полярности с максимальной амплитудой и длительностью:

Attenuation 0 dB (переключатель Coarse "0", переключатель Fine "0") Rep Rate 1 kHz (переключатель Range "1", ручка Fine "1.0х") Duration 100 ns (крайнее положение ручки по часовой стрелке) Negative

Ţ

7.5.12 Установить триггер осциллографа: Trigger CH1 Slope Neg, Level Set to 50 %.

7.5.13 Поместить изображение сигнала посередине дисплея осциллографа регулировками положения по вертикали и горизонтали.

7.5.14 Выполнить действия по пунктам 7.5.5 – 7.5.10 для импульсов отрицательной полярности.

Параметр	Измеренное значение	Пределы допускаемых значений
1	2	3
Импульсы полож	ительной полярности	
выброс в паузе		не более 2.0 %
выброс на вершине		не более 2.0 %
неравномерность вершины		не более 2.0 %
амплитуда паразитных импульсов при ллительности выходных импульсов 100 ns		не более 30 %
амплитуда паразитных импульсов при длительности выходных импульсов 20 ns		не более 6 %
Импульсы отрин	ательной полярности	
выброс в паузе		не более 2.0 %
выброс на вершине		не более 2.0 %
неравномерность вершины		не более 2.0 %
амплитуда паразитных импульсов при длительности выходных импульсов 100 ns		не более 30 %
амплитуда паразитных импульсов при длительности выходных импульсов 20 ns		не более 6 %

Таблица 7.5 – Параметры искажений выходных импульсов

7.5.15 Отключить курсоры на осциллографе.

7.6 Проверка амплитуды напряжения и времени задержки триггеров выхода

Схема соединения оборудования – по пункту 7.1.1.

7.6.1 Сделать на генераторе установки импульсов положительной полярности: Attenuation 20 dB (переключатель Coarse "20", переключатель Fine "0") Rep Rate 1 kHz (переключатель Range "1", ручка Fine "1.0х") Duration ≈20 ns Positive Delay 0 ns (крайнее положение ручки против часовой стрелки)

7.6.2 Сделать установки на канале CH1 осциллографа: Vertical Setup: CH1 Impedance 50 Ω, Scale 200 mV/div Horizontal Setup: Scale 20 ns/div Trigger CH1 Slope Pos, Level Set to 50 %

7.6.3 Соединить кабелем BNC(m-m) разъем "0.8 Volts" генератора с разъемом канала "CH2" осциллографа.

7.6.4 Сделать установки на канале CH2 осциллографа: Vertical Setup: CH2 Impedance 50 Ω, Scale 500 mV/div Trigger Source: CH2, Trigger CH2 Slope Pos, Level Set to 50 % Measure: CH2 Amplitude

Curst X Post 3.0 ns Curst X Post 3.0 ns Curst X Post 72.0 ns 72.0 ns <	Edit	Vertical	Horiz/Acq	Tng	Display	Cursors	Measure	Mask	Math	MyScope	Analyze	Utilities Help			Tek	- 6
Image: Solution of Sol				1						Y						
3.0ns Curs2 X Pos 72.0ns 200mW/dsv 500 Lv2.5G 200mW/dsv 500 Lv2.5G 200mV/dsv 500 Lv2				¢	>						6			ŕ	Curs1 X I	^{>os} ()
Curs2 X Pos 72.0ns Curs2 X Pos 70.0ns Curs2 X Pos 7															3.0ns	
72.0ms							_								Curs2 X I	os 🗿
C3 200mV/dv 500 W225C C3 200mV/dv 500 W225C C3 500mV Offset 2 0mV 500 W225C C4 72.0ns 500 0mV Fail 72.0ns C5 00 0mV 500 0mV 500 0mV 200ms/dv 500 0mV C6 Fise 72.7ps 731.41351p 713.41351p 713.41351p 713.41351p 713.41351p 713.41351p 713.41351p 713.4120						.									72.0m	\$
300mV/dv 500 Lx2.5G 500mV/dv 500 Lx2.5G 500mV Offset 2 GraV 500 <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td>					~											
Circle State Sons Circl																
200mV/div 50Ω Ew2.5G 200mV 500mV Offset 2 0mV 50Ω Ew2.5G 200mV 500mV Offset 2 0mV 50Ω Ew2.5G E00ns 60 0ns E00ns E00ns E00ns 14.433MHz E00.3ps 499.51277p 60.142n 5.356p 7.037k 161 Fail 727.7ps 73.54351p 71.37k 67 70.37k 67 172 Pos Wid 20.28ns 20.26n 21.29n 2.545p 7.037k 67 172 Pos Wid 50 72 7 0 0.0 60 60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u>		~~	-			\sim							· · · · · · · · · · · · · · · · · · ·	
300mV/div 500 lbv2.5G 300mV/div 500 lbv2.5G 300mV Offset: 2 0mV 500 lbv2.5G 11 10 ns 12.0 ns 12.0 ns 13.0 ns 12.0 ns 14.493MHz 14.493MHz 14.493MHz 14.493MHz 15 16.42n 5.356p 16 17.0 ns 17 18.4351p 17.10 s 19.51277p 18.495.512 0 mV 19.51277p 19.512 7 ms 13.41351p 17.10 s 10.3 multical states 11 10.202 no s 11 10.202 no s 11 11.10k 12.10 ms 11.10k 12.10 ms 11.10k 12.10 ms 11.10k 13.10 ms 11.10k 14.493MHz 11.10k 14.10 ms 11.10k 14.10 ms 11.10k 14.10 ms 11.10k 15.10 ms 11.10k 15.10 ms 11.10k 16.10 ms 11.10k 17.10 ms 11.10k 11.10																
200mV/div 50Ω Exc2.5G 500mV Offset 2 0raV 50Ω Exc2.5G 500mV Id 439 0mHz Exc2.5G Exc2.5G 500mV Id 439 0mHz Exc2.5G Exc2.5G 500 3ps 499.51277p 467.1p 6.142n 5.355p 7.037k Image: 20.28ns 20.28ns 20.28ns 20.28ns 69 0 0.0 0.0 0.0 0.0 0.0																
31 200mV/div 500 Exc2.5G 32 500mV Offset 2 0:0V 500 Exc2.5G 35 500mV Offset 2 0:0V 500 Exc2.5G 36 59.0ns 14.493MHz Exc2.5G Exc2.5G 36 59.0ns 14.493MHz Exc2.5G Exc2.5G 36 59.0ns 14.493MHz Exc2.5G Exc2.5G 37 14.493MHz Exc2.5G Exc2.5G Exc2.5G 38 14.493MHz Exc2.5G Exc2.5G Exc2.5G 39 14.493MHz Exc2.5G Exc2.5G Exc2.5G 30 14.493MHz Exc2.5G Exc2.5G Exc2.5G 31 15.27 14.493MHz Exc2.5G Exc2.5G Exc2.5G 32 15.27 14.12 15.																
310 200mV/div 50Ω Ew22.5G 200ps/ 310 500mV Offset 2 0 mV 50Ω Ew22.5G 72.0ns 500mV Offset 2 0 mV 50Ω Ew22.5G 72.0ns 69.0ns 72.0ns 69.0ns 14.493MHz 14.493MHz 225 184 acqs RL:1.0k Auto January 01, 2002 01:3 31 Rise 500.3ps 499.51277p 467.1p 6.142n 5.356p 7.037k 60 32 Pos Wid 72.7ps 731.41351p 713.4p 5.162n 4.779p 7.037k 60 32 Pos Wid 20.28ns 20.284339n 20.26n 21.29n 2.545p 7.037k 60 33 Neg Wid -5 -7 2 0.0 0.0 60																
37 200mV/div 50Ω Bxc2.5G 30ns 500mV Offset 2 0 oV 50Ω Bxc2.5G 72.0ns 69.0ns 69.0ns 69.0ns 225 184 acqs RL:1.0k 4.493MHz 14.493MHz 14.493MHz 20.257 201 201 201 201 201 201 201 201 201 201																
37 200mV/div 50Ω Ew2.5G 20.0ns/div 225 184 acqs RL:1.0k 400 January 01, 2002 01 01 14.493MHz 01 20.20 01 20.20 01 20.20 01 20.20 01 20.20 01 20.20 01 20.20																
200mV/div 50Ω Bwc2.5G 500mV Oifset 2 0mV 50Ω Bwc2.5G 500mV Oifset 2 0mV 50Ω Bwc2.5G 69 0ns 14.493MHz 14.493MHz Value Mean Min Max St Dev Count Info Count Info St Dev Count Info Count In																
X 3011 4.22.5G 30.0s 72.0ns 72.0ns 69.0ns 72.0ns 69.0ns <			<u></u>					ni katorian		1		(ui continue
Value Mean Min Max St Dev Count Info CT Rise 500.3ps 499.51277p 467.1p 6.142n 5.356p 7.037k Ø CT Fall 727.7ps 731.41351p 713.4p 5.162n 4.779p 7.037k Ø CT Pos Wid 20.28ns 20.266n 21.29n 2.545p 7.037k Ø CT Neg Wid -s ? ? 0 0 Ø	5 (C	00mV (v o Miset 2 Gar	V 50	γ:2.5G Ω ^α w:2.	5G	11 3.0ns 12 72.0r	18	-			Horz Diy: 60.0	ns	20.0ns/div 5.00 Run A	GS/s 20 verage:32)0ps/pt
Value Mean Min Max St Dev Count Info CT Rise 500.3ps 499.51277p 467.1p 6.142n 5.356p 7.037k Ø CT Fall 727.7ps 731.41351p 713.4p 5.162n 4.779p 7.037k Ø CT Pos Wid 20.28ns 20.284339n 20.26n 21.29n 2.545p 7.037k Ø CT Neg Wid -s ? ? 0 0 Ø							00.00 🐨	15						225 184 acqs	RL:	1.0k
Value Mean Min Max St Dev Count Info C1 Rise 500.3ps 499.51277p 467.1p 6.142n 5.356p 7.037k Ø C1 Fall 727.7ps 731.41351p 713.4p 5.162n 4.779p 7.037k Ø C3 Pos Wid 20.28ns 20.284339n 20.26n 21.29n 2.545p 7.037k Ø C3 Nog Wid -s ? ? 0.0 0.0 Ø							14.49	3MHz						Auto January	01, 2002	01:37:
CIN Rise 500.3ps 499.51277p 467.1p 6.142n 5.356p 7.037k Image: Constraint of the constraint of			Value		Mean	Min		ax	St Dev	Count	Info					
Pos Wid 20.28ns 20.28d39n 20.26n 21.29n 2.545p 7.037k Neg Wid -s ? ? 0.0 0.0 0.0	61 F 01 F	tise all	500.3ps	499. 731	51277p 41351p	467.1p	6.142	n 5	.356p	7.037k						
Mog Wid -5 ? ? ? 00 0.0 Ø	ES P	os Wid	20.28ns	20.2	84339n	20.26n	21.29	n 2	.545p	7.037k	<i>w</i>					
		leg Wid	-5	?		?	?	0	0	0.0	Ø					
400.001 400.001 400.001 400.001 400.001 400.001 400.001 400.001 400.001 400.001 400.001 400.001 400.001 400.001		Ampl*	480.0mV	431.	33533m	480.0m	484.0	n 9	49.7µ	7.037k						

7.6.5 Наблюдать на дисплее осциллографа импульсы, показанные на рисунке 7.6.1. Записать отсчет амплитуды напряжения CH2 Amplitude в столбец 2 таблицы 7.6.

7.6.6 Ввести на осциллографе вертикальные курсоры (Cursors: V Bars).

7.6.7 Поместить курсор t1 на передний фронт выходного импульса генератора, отображаемый на канале CH1 осциллографа, как показано на рисунке 7.6.1.

7.6.8 Ввести на генераторе максимальное время задержки потенциометром Delay (крайнее положение ручки по часовой стрелке).

7.6.9 Поместить курсор t2 на передний фронт задержанного выходного импульса генератора, отображаемого на канале CH1 осциллографа, как показано на рисунке 7.6.2.

7.6.10 Записать отображаемое на дисплее осциллографа значение ∆t как максимальное регулируемое время задержки триггера в столбец 2 таблицы 7.6.

7.6.11 Пересоединить кабель BNC(m-m) на разъем "100 ns" генератора.

7.6.12 Наблюдать на дисплее осциллографа импульсы, показанные на рисунке 7.6.3. Записать отсчет амплитуды напряжения CH2 Amplitude в столбец 2 таблицы 7.6.

7.6.13 Поместить курсор t1 на передний фронт импульса триггера, отображаемого на канале CH2 осциллографа, как показано на рисунке 7.6.3.

Поместить курсор t2 на передний фронт выходного импульса генератора, отображаемый на канале CH1 осциллографа, как показано на рисунке 7.6.3.

PSPL2600C/MП-2018 Генераторы импульсов Tektronix PSPL2600C. Методика поверки стр. 14 из 16

e Edf Vertical Honv2Acti Total Total (3) Curraf X 400p (3) Curraf X 400p (40) Curraf X 400p (3) Curraf X 400p (40) Curraf X 400p (13) Curraf X 400p (14) Curraf X 400p (15) Curraf X 120m (17) Z00mV/div S00 Vertage 32 (17) 200mV Offset 2 BmV S00 Vertage 32 (17) Curraf X S02 pp S00 100 225G (17) Total 6 ms Total 6 ms Total 7 ms (17) Curraf X S02 pp S00 100 2170 (17) Curraf X S02 pp S00 10	
(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	
Curst x 400p Curs x 128n 3. 200mV/div 500 ₩22.56 500mV Offset 2 0mV Value Mcan Min Max 51 Dev Count Info T Fall 502 895 501.02/17 555.8p 13.32n 4 996p 6.356k 0 F Fall 502 895 501.02/17 555.8p Fall 17.7868ain 10.76n 2.56 50 5.02/10 7 50.356k 0 Fall 17.7868ain 10.76n 2.56 50 5.02/2p	
400p Curs2 X 123n 200mV/div 500 W2.3G 500mV Offsel 2 GmV 500 W2.3G 500mV Offsel 2 GmV 500 W2.3G T28ns 128 6ns 7.776 MHz Value Mean Min Max \$1 Dev Count Info Fall Fila 502 8p 501032172 355.6p 13.32n 4996p 6.356k Fila 502 8p 501032172 355.6p 13.32n 4996p 6.356k	X Pos
Curs2 X 128 m 200mV/div 502 kv2.5C 500mV Offset 2 0mV 500 kv2.5C Value Mean Min Max \$10ev Count Info Fall 502 8ps 50103217p 355.6p 13 32n 4 995p 6 356k 7.776MHz Pos Wid 17.8ns 17.79684n 10.76n 26.56n 5.028p 6 356k	ins.
200mV/div 500 Mr2.50 129n 30 200mV/div 500 Mr2.50 20.0ms/div 5.00,8/s 2 30 200mV/div 500 Mr2.50 129n 129n 129n 30 500 mV Offset 2.0 mV 500 Mr2.50 128ns 128ns 30 128ns 128ns 128ns 128ns 128ns 128ns 30 128ns 128ns 128ns 128ns 128ns 128ns 30 128ns 128ns 128ns 128ns 128ns 128ns 30 128.6 ms 12902 128.6 ms 128.6 ms<	N O
123n 32 200mV/div 500 500mV Offset 2 durV 500 500mV Offset 2 durV 500 123ns 128ns 128	X Pos 🛈
200mV/div 500 Fw2.5G 30 200mV/div 500 Fw2.5G 30 200mV Offset 2 0mV 500 Fw2.5G 30 200mV Offset 2 0mV 500 Fw2.5G 30 128 ns 128 ns 128 ns 127 n 6 356k 13 32n 4 996p 6 356k 10 31 Rise 502 8ps 501 63217p 17.766Mlz 12.7 n 6 799p 6 356k 10 20 Pos Wid 17.79684n 10.76n 26 56n 12. Pos Wid 17.8 ns 17.79684n 10.76n 26 56n	ns
200mV/div 50Ω Ew22.5G 30 200mV/div 50Ω Ew22.5G 31 200mV/div 50Ω Ew22.5G 32 200mV Offset 2 dmV 50Ω Ew22.5G 31 128.6ms 128.6ms 32 7.776MHz 20.0ms/div 5.0GS/s 2 33 Rtae 502.8ps 501.03217p 355.8p 35 7.776MHz 20.0ms/div 20.0ms/div 20.0ms/div 33 Rtae 502.8ps 501.03217p 355.8p 13.32m 4.996p 6.356k 6 34 754.4ps 745.60244p 376.6p 127.n 6.356k 6 34 Pos Wid 17.8ms 17.796884n 10.76n 26.56n 5.028p 6.356k 6	
31 200mV/div 500 \$\frac{1}{28}2.5G}{12.9ns} 35 500mV Offset 2.0mV 500 \$\frac{1}{28}.6ms}{12.8ns} 36 7.776MHz \$\frac{1}{28}.568 + 12.9ns}{12.8ns} \$\frac{1}{28}.6ms}{12.8ns} \$\frac{1}{28}.6ms}{12.8ns} 7.776MHz \$\frac{1}{28}.6ms}{12.8ns} \$\frac{1}{28}.6ms}{12.8ns} \$\frac{1}{28}.6ms}{12.8ns} \$\frac{1}{28}.6ms}{12.8ns} 81.8e \$\frac{502.8ps}{5021.03217p} \$\frac{155.8p}{155.8p} \$\frac{13.32n}{13.32n} \$\frac{4.996p}{9.96p} \$\frac{6.356k}{6.356k} \$\frac{6}{2}\$ \$\frac{1}{28}.6ms}{12.8ns} \$\frac{1}{28}.6ms}{12.8ns} 81.9e Yos Wid \$\frac{17.796884n}{17.8ns} \$\frac{10.76n}{26.56n} \$\frac{5.026p}{5.026p} \$\frac{6.356k}{5.026p} \$\frac{6.356k}{6.356k} \$\frac{6}{2}\$ \$\frac{1}{28}.5ms}	
200mV/div 500 L w22.5G 500mV Offset 2 8mV 400ps 129ns 129ns 128.6ns 128.6ns 7.76MHz 128.6ns 7.745MHz 128.6ns 7.745MHz 128.6ns 7.745MHz 128.6ns 7.756MHz 128.6ns 7.7658 12.7n 7.76598 12.7n <tr< td=""><td></td></tr<>	
200mV/div 50Ω w2.5G 500mV 0ffset 2.0mV 50Ω w2.5G 129ns 129ns 128.6ns 128.6ns 128.77.776MHz 120.2ns 128.78.77.766MHz 127.0ns	
200mV/div 500 1/22.5G 500mV 0ffset 2.0mV 500 1/29.ns 128.6ns 128.6ns 1/28.6ns 7.776MHz 7.776MHz 20.0ns/div 5.0GS/s 2 Stoom V 0ffset 2.0mV 500 1/2.2.6G 1/2.8.6ns 7.776MHz 7.776MHz 20.0ns/div 5.0GS/s 2 Stoom V 0ffset 2.0mV 500 1/2.8.6ns 2 7.776MHz 7.776MHz 20.0ns 20.0ns/div 5.0GS/s 2 Stoom V 0ffset 2.0mV 500 1/2.7n 20.0ns 2 Stoom V 0ffset 2.0mV 500 1/2.7n 3 2 2 Stoom V 0ffset 2.0mV 500 1/2.7n 6.793p 6.356k 0 Stoom V 74/ue Mean Min Max 51 Dev Count Info Stoom V 74/ue Mean Min Max 51 Dev Count Info Stoom V 74/ue Mean Min Max 51 Dev Count Info Stoom V 74/ue 745.	
31 200mV/div 50Ω 500mV 20.0ns/div 5.0GS/s 2 35 500mV 0ffset 2.0mV 50Ω 129ns 129ns 128.6ns	
200mV/div 50Ω Ew22.5G 500mV Offset 2.0mV 50Ω Ew22.5G 128.6ns 129ns 128.6ns 128.6ns 7.776MHz 20.0mV Value Mean Min Max St Dev Count Fall 754.4ps 745.60244p 756.6p 12.7n 6.799p 6.356k 0 Pos Wid 17.8ns 17.796834n	
200mV/div 50Ω 50Ω 50Ω 500mV 129ns 129ns 129ns 129ns 129ns 128.6ns	
200mV/div 50Ω 50Ω 50Ω 50Ω 20.0ns/div 5.0GS/s 2 500mV Offset 2.0mV 50Ω 400ps 128.6ns 128.6ns 20.0ns/div 5.0GS/s 2 128.6ns 128.6ns 128.6ns 128.6ns 128.6ns 128.6ns 20.0ns/div 5.0GS/s 2 Value Mean Min Max St Dev Count Info Rise 502.8ps 501.03217p 355.8p 13.32n 4 996p 6.356k 0 Fall 754.4ps 745.60244p 376.6p 12.7n 6.799p 6.356k 0 Pos Wid 17.8ns 17.796834n 10.76n 26.56n 5.026p 6.356k 0	
C1 200mV/div 50Ω Ew2.5G 100ps 120.ns/div 5.0GS/s 2 C1 500mV Offset 2.0mV 50Ω Ew2.5G 129.ns 128.6ns 128.6ns 128.6ns 128.6ns 128.6ns 127.7cMHz 128.6ns 13.32n 128.6ns 128.6ns 13.32n 127.7n 13.52n 127.7n 13.52n 127.7n 127.7n 127.7n 127.7n 127.7n 127.7n 127.7n <td></td>	
¹ 200mV/div ¹ 500 ¹ 400ps ¹ 29ns ¹ 20ns ¹ 20ns ¹ 20ns ¹ 20ns ¹ 20ns ¹ 220ns	
200mV/div 50Ω Lw2.5G 500mV Offset 2.0mV 50Ω Lw2.5G 128.6ns 128.6ns 7.776MHz 7.776MHz 200mV/div 502.8ps 501.63217p 355.8p 13.32n 4 996p 6.356k Fall 754.4ps 745.60244p 376.6p 12.7n 6.793p 6.356k 0 17.8ns 17.796834n 10.76n	
Value Mean Min Max St Dev Count Info Rise 502.8ps 501.03217p 355.8p 13.32n 4 996p 6.356k 0 Fall 754.4ps 745.60244p 376.6p 12.7n 6.799p 6.356k 0 Pos Wid 17.8ns 17.79684n 10.76n 26.56n 5.026p 6.356k 0	
Value Mean Min Max St Dev Count Info Image: Sign of the state of the st	200ps/pt
Value Mean Min Max St Dev Count Info Construction 502.8ps 501.03217p 355.8p 13.32n 4 996p 6.356k Image: Construction Image: Construline Image: Construline Image:	?L:1.0k
Value Mean Min Max St Dev Count Info CIN Rise 502.8ps 501.63217p 355.8p 13.32n 4.996p 6.356k Image: Count of the count of th	01-48
Rise 502.8ps 501.03217p 355.8p 13.32n 4.996p 6.356k Ø Fall 754.4ps 745.60244p 376.6p 12.7n 6.793p 6.356k Ø Pos Wid 17.8ns 17.796884n 10.76n 26.56n 5.026p 6.356k Ø	
Fall 754.4ps 745.60244p 376.6p 12.7n 6.799p 6.356k Ø Image: Pos Wid 17.8ns 17.796834n 10.76n 26.56n 5.026p 6.356k Image: Pos Wid Image: Pos Wid 1mage: Pos Wid 1ma	
20 Pos Wid 17.8ns 17.796834n 10.76n 26.56n 5.026p 6.356k	
Ampt 482.0mY 482.3435m 7.933m 484.0m 814.6u 6.355k	
Ampl* 827.5mV 824.79213m 12.97m 832.5m 2.416m 6.355k	

7.6.14 Записать отображаемое на дисплее осциллографа значение ∆t как фиксированное время задержки триггера в столбец 2 таблицы 7.6.

Таблица 7.6 – Ампли	гуда нап	ряжения и в	ремя задер:	жки тригге	ров выхода
---------------------	----------	-------------	-------------	------------	------------

Параметр	Измеренное значение	Пределы допускаемых значений
1	2	3
Выход "0.	8 Volts"	
амплитуда напряжения		не менее 800 mV
максимальное регулируемое время задержки		100 ns
Выход "1	15 ns"	· · · · · · · · · · · · · · · · · · ·
амплитуда напряжения		не менее 800 mV
фиксированное время задержки	· · · · · · · · · · · · · · · · · · ·	(115 +15) ns

ПОВЕРКА ЗАВЕРШЕНА

2

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;

- номер и дата протокола поверки

- наименование и обозначение поверенного средства измерения

- заводской (серийный) номер;

- обозначение документа, по которому выполнена поверка;

- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;

- температура и влажность в помещении;

- фамилия лица, проводившего поверку;

 результаты определения метрологических характеристик по форме таблиц раздела 7 настоящего документа.

Допускается не оформлять протокол поверки отдельным документом, а результаты поверки (метрологические характеристики) указать на оборотной стороне свидетельства о поверке в обобщенном виде.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

- Е.В. Маркин