УТВЕРЖДАЮ

Первый заместитель генерального директоразаместитель по научной работе

ФГУП «ВНУ ЗВЕТИВ В НИТЕЛЬНОВ В НИТЕЛЬНОВ

ИНСТРУКЦИЯ

УСТАНОВКА ПРЕЦИЗИОННОГО АНАЛИЗА ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ СТРУКТУР V93000 SOC SERIES SYSTEM E8000SYS

МЕТОДИКА ПОВЕРКИ

620-18-001

1 ОБЩИЕ СВЕДЕНИЯ

Настоящая методика поверки распространяется на установку прецизионного анализа параметров полупроводниковых структур V93000 SOC Series System E8000SYS (далее - установка), изготовленную фирмой «Advantest Europe GmbH», Германия, и устанавливает методы и средства ее первичной и периодической поверок.

Интервал между поверками – 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При поверке выполняют операции, представленные в таблице 1.

Таблица 1

	Номер	Проведение операции при		
Наименование операции	пункта методики	первичной поверке	периодической поверке	
1 Внешний осмотр	7.1	да	да	
2 Подготовка к поверке	7.2	да	да	
3 Идентификация программного обеспечения	7.3	да	да	
4 Опробование	7.4	да	да	
5 Определение метрологических характеристик	7.5	да	да	
5.1 Определение абсолютной погрешности установки частоты	7.5.1	да	да	
5.2 Определение абсолютной погрешности опорных напряжений постоянного тока	7.5.2	да	да	
5.3 Определение абсолютной погрешности опорных сопротивлений высокоточных измерителей	7.5.3	да	да	
5.4 Проведение процедуры автокалибровки	7.5.4	да	да	
5.5 Проведение процедуры завершающей диагностики	7.5.5	да	да	

Допускается проведение поверки отдельных измерительных каналов, которые используются при эксплуатации по соответствующим пунктам настоящей методики поверки. Соответствующая запись должна быть сделана в эксплуатационных документах и свидетельстве о поверке на основании решения эксплуатирующей организации.

Значения нормируемых метрологических характеристик установки, приведенных в эксплуатационной документации, будут находиться в допускаемых пределах, если результаты поверки по методикам, изложенным в пп. 7.5.1 и 7.5.3, положительные и процедуры автокалибровки и завершающей диагностики прошли успешно.

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки используют средства измерений и вспомогательное оборудование, представленное в таблице 2.

Таблица 2

Номер	Наименование рабочих эталонов или вспомогательных средств поверки; номер до-
пункта	кумента, регламентирующего технические требования к рабочим эталонам или
методики	вспомогательным средствам; разряд по государственной поверочной схеме и (или)
	метрологические и основные технические характеристики средств поверки
7.4.1	Частотомер электронно-счетный 53131, диапазон измеряемых частот от 10 Γ ц до 225 $M\Gamma$ ц, пределы допускаемой относительной погрешности $\pm 5 \cdot 10^{-6}$

Продолжение таблицы 2

продолжен	ие таолицы 2
Номер пункта методики	Наименование рабочих эталонов или вспомогательных средств поверки; номер документа, регламентирующего технические требования к рабочим эталонам или вспомогательным средствам; разряд по государственной поверочной схеме и (или) метрологические и основные технические характеристики средств поверки
7.4.2	Мультиметр 3458A (2 шт.), диапазон измерений напряжения постоянного тока от 1 мкВ до 1000 В, пределы допускаемой относительной погрешности от $0.5 \cdot 10^{-4}$ до $2.5 \cdot 10^{-4}$ %, диапазон измерений силы постоянного тока от 0.1 нА до 1 А, пределы допускаемой относительной погрешности от $1.4 \cdot 10^{-3}$ до $4.1 \cdot 10^{-2}$ %, диапазон измерения напряжения переменного тока от 10 мкВ до 1000 В в диапазоне частот от 1 Гц до 10 МГц, пределы допускаемой относительной погрешности от $7 \cdot 10^{-3}$ до $4 \cdot 10^{-2}$ %, диапазон измерений силы переменного тока от 1 мкА до 1 А в диапазоне частот от 10 Гц до 100 кГц, пределы допускаемой относительной погрешности от $3 \cdot 10^{-2}$ до $1 \cdot 10^{-1}$ %
7.4.2	Источник питания постоянного тока Agilent 6624A, максимальное напряжение на выходе 50 В, пределы допускаемой абсолютной погрешности установки выходного напряжения постоянного тока $\pm (0,0006 \cdot U_{yct} + 50 \text{ мВ})$, максимальная сила тока на выходе 4 А, пределы допускаемой абсолютной погрешности установки выходного постоянного тока $\pm (0,0016 \cdot I_{yct} + 20 \text{ мA})$, где U_{yct} и I_{yct} — устанавливаемые значения напряжения и силы постоянного тока
7.4.2	Источник питания постоянного тока Agilent 6654A, максимальное напряжение на выходе 60 В, пределы допускаемой абсолютной погрешности установки выходного напряжения постоянного тока ±(0,0006·U _{уст} +26мВ), максимальная сила тока на выходе 9 А, пределы допускаемой абсолютной погрешности установки выходного постоянного тока ±(0,0015 ·I _{уст} +8 мА) Вспомогательные средства поверки
7.4.2	Интерфейсная плата E7008-66431 (E7008-66631)
7.4.2	Базовая плата опорных сопротивлений Е7008-66401(Е7008-68501)
7.4.2	Комплект кабелей Е7008-68504
7.4.2	Комплект кабелей Е7008-68503
7.4.2	Кабель утилитных линий
7.4.2	Кабель GPIB
7.4.2	Кабель BNC

- 3.2 Вместо указанных в таблице 2 допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой точностью.
- 3.3 Применяемые средства поверки должны быть утверждённого типа, исправны и иметь действующие свидетельства о поверке (отметки в формулярах или паспортах).

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 К проведению поверки установки допускается инженерно-технический персонал со среднетехническим или высшим образованием, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке, допущенный к работе с электроустановками и имеющий право на поверку (аттестованный в качестве поверителей).

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки должны быть соблюдены требования безопасности, предусмотренные ГОСТ Р 12.1.019-2009, «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также изложенные в руководстве по эксплуатации установки, в технической документации на применяемые при поверке рабочие эталоны и вспомогательное оборудование.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны соблюдаться следующие условия:
 - температура окружающего воздуха

от 20 до 25 °C;

- относительная влажность окружающего воздуха не более

70 %:

- атмосферное давление

от 84 до 106,7 кПа (от 650 до 800 мм рт.ст.).

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При внешнем осмотре проверить:

- отсутствие внешних механических повреждений и неисправностей, влияющих на работоспособность установки;

Результаты внешнего осмотра считать положительными, если отсутствуют внешние механические повреждения и неисправности, влияющие на работоспособность установок.

7.2 Подготовка к поверке

- 7.2.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- 7.2.1.1 Установить интерфейсную плату на измерительный блок установки в соответствии с рисунком 1.

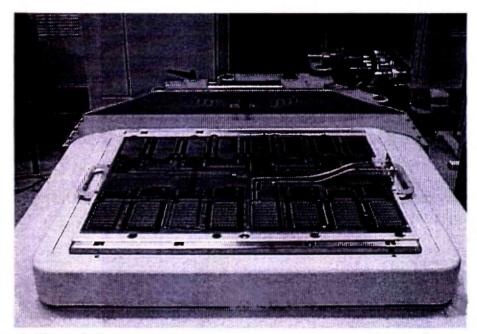


Рисунок 1- Интерфейсная плата, установленная на измерительный блок установки

7.2.1.2 Подсоединить базовую плату Е7008-66401 к интерфейсной плате с помощью кабеля утилитных линий в соответствии с рисунком 2.

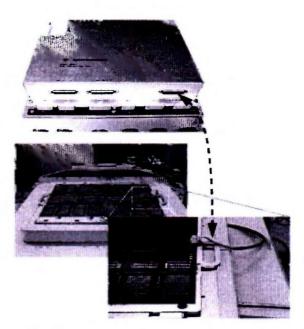


Рисунок 2 - Соединение базовой и интерфейсной плат 7.2.1.3 Подсоединить базовую плату E7008-66401 к источникам питания и мультиметрам с помощью набора кабелей E7008-68503 в соответствии с рисунком 3.

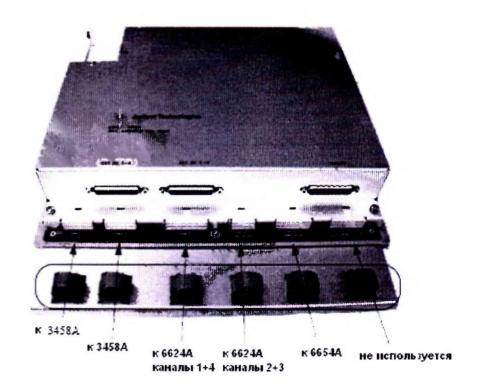


Рисунок 3 — Расположение разъемов на базовой плате для подключения к источникам питания и мультиметрам

При подключении необходимо использовать указания по использованию GPIB-адресов, приведенные в таблице 3.

Таблица 3

Наименование прибора	GPIB адрес
Источник питания Agilent 6624A	3
Источник питания Agilent 6654A	4
Мультиметр Agilent 3458A №1	6
Мультиметр Agilent 3458A №2	7
Частотомер электронно-счетный Agilent 53131A	13

Для подключения к источнику питания Agilent 6624A использовать связку из 10 кабелей, помеченные бирками по следующей схеме:

<канал>

- номер канала источника питания от одного до четырех;

 $\langle F|S\rangle$

- Force или Sense;

<+|->

- плюс или минус.

На рисунке 4 детально показано, как должен быть подключен кабель к задней панели источника питания Agilent 6624A.

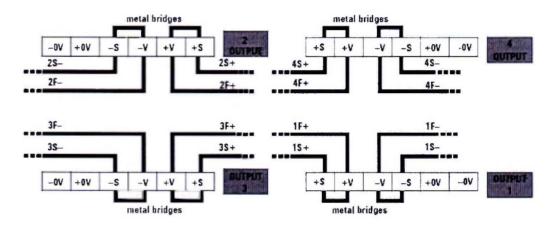


Рисунок 4 – Схема подключения кабеля к задней панели источника питания

Для подключения к источнику питания Agilent 6654A использовать связку из шести кабелей, помеченные бирками следующим образом:

- два кабеля связаны вместе и помечены +F;
- два кабеля связаны вместе и помечены F;
- один кабель помечен +S;
- один кабель помечен -S.

На рисунке 5 детально показано, как должен быть подключен кабель к задней панели источника питания Agilent 6654A.

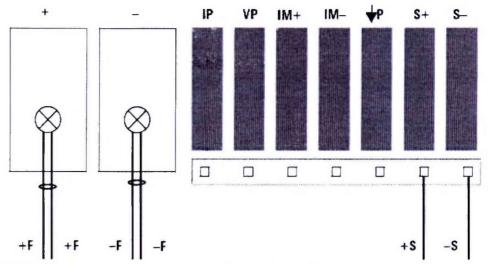


Рисунок 5 - Схема подключения кабеля к задней панели источника питания

Для подключения к мультиметрам Agilent 3458A использовать два шестипиновых кабеля следующим образом:

- разъем DMM1 подключите к мультиметру №1 (GPIB адрес 6);
- разъем DMM2 подключите к мультиметру №2 (GPIB адрес 7).

Для подключения базовой платы E7008-66401 к измерительному блоку установки использовать комплект кабелей E7008-68504. Кабели помечены по следующей схеме:

$$<$$
"G" | "S" | "F" $> <$ " $+$ " | " $-$ " $> <$ номер кардкейджа $>$.

Расположение разъемов на измерительном блоке установки приведено на рисунке 6.

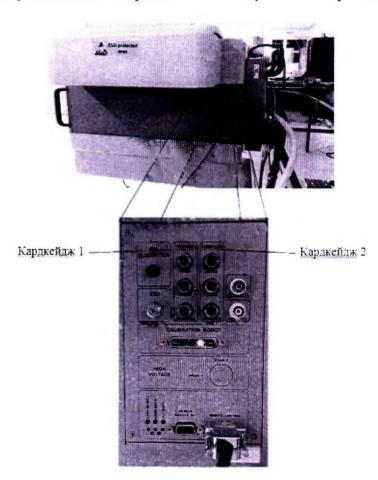


Рисунок 6 - Расположение разъемов на измерительном блоке установки

7.2.1.4 Подсоединить кабели, ориентируясь на маркировку, в соответствии рисунком 7.

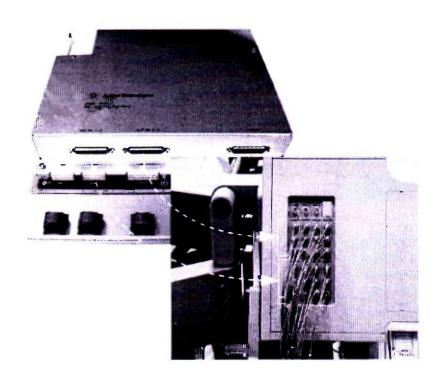


Рисунок 7 – Порядок подсоединения кабелей

- 7.2.1.5 Провести инициализацию мультиметров и частотомера, для чего выполнить следующие действия:
 - а) на передней панели мультиметров Agilent 3458A установить:
 - кнопку «Terminals» в положение «front»;
 - кнопку «Guard» в положение «Open».
- б) на передней панели частотомера Agilent 53131A установить параметр «**Gate Time Control»** в центральное положение. Никакие другие кнопки не должны быть нажаты.
 - в) установить соответствующие GPIB адреса для каждого из приборов.
- 7.2.1.6 Осуществить предварительный прогрев приборов в течение не менее 4 часов, для установления их рабочего режима.

7.3 Идентификация программного обеспечения

- 7.3.1 Проверку соответствия заявленных идентификационных данных программного обеспечения (ПО) установки проводить в следующей последовательности:
 - проверить идентификационное наименование ПО;
- проверить номер версии (идентификационный номер) ПО для чего в окне «ui_report.ORG.PROD» переместитесь вверх, найдите запись, отображающей версию ПО, например «s/w rev. 7.4.3.3».

Результаты поверки считать положительными, если идентификационные данные ПО соответствуют идентификационным данным, приведенным в таблице 4.

Таблица 4

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	SmarTest
Номер версии (идентификационный номер) ПО	не ниже 7.4.3.3

7.4 Опробование

7.4.1 Запустить ПО установки (Для запуска программы ввести в строку команду: /opt/hp93000/soc/fw/bin/tracecal, после этого нажать клавишу «ENTER»).

На экране появится окно программы. Вид окна программы с описанием его элементов приведен на рисунке 8. Описание кнопок, находящихся в левой верхней части экрана приведено в таблице 5.

Программа автоматически опрашивает установку и все подключенные внешние приборы и выводит результат в окно программы. Если оборудование подключено неправильно и/или его статус не соответствует требуемому, установка выдаст сообщение об ошибке подключения внешнего оборудования, необходимо закрыть программу, проверить правильность подключения оборудования и перезапустить программу.

Если оборудование подключено правильно, программа автоматически начнет процедуру опроса мультиметров Agilent 3458A и базовой платы.

Время опроса мультиметров составляет 15 минут.

Время опроса базовой платы составляет 10 минут.

7.4.2 Результаты опробования считать положительными, если при опросе установки не отображается информация об ошибках.

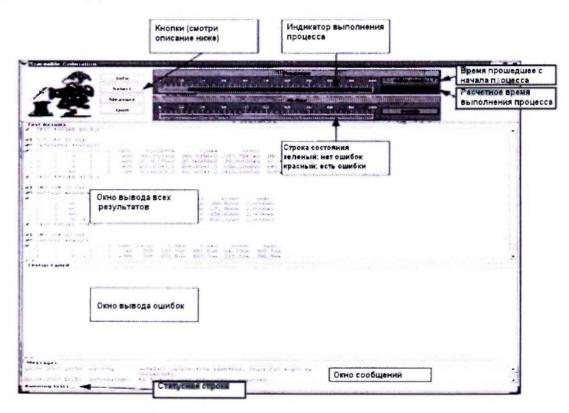


Рисунок 8 - Окно программы

Таблица 5

таолица 5	
Кнопка	Описание
Info	Показывает короткое описание программы
Select	Выводит на экран редактор файла списка процедур
Measure	Запускает процедуру измерений
Quit	Прерывает измерения, если они не закончены, или закрывает программу в конце измерений

7.5 Определение метрологических характеристик

7.5.1 Определение абсолютной погрешности установки частоты

- 7.5.1.1 Определение абсолютной погрешности установки частоты проводить путем измерения с помощью частотомера Agilent 53131A опорной частоты установки, для чего необходимо выполнить операции указанные ниже.
 - 7.5.1.2 В окне программы нажать кнопку «Measure».
- 7.5.1.3 Соединить канал № 1 частотомера Agilent 53131A с выходом **10 MHz OUT** на боковой панели измерительного блока установки, как показано на рисунке 9.

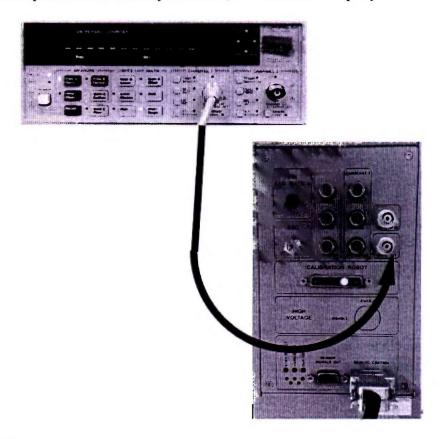


Рисунок 9 — Соединение частотомера с выходом 10 MHz OUT измерительного блока установки

7.5.1.4 В предложенном окне, представленном на рисунке 10 нажать «**ОК»**, частотомер выполнит измерение опорной частоты установки.

Рисунок 10 – Окно программы при измерении опорной частоты

7.5.1.5 По окончании измерений и после вывода результатов измерений опорной частоты на экран, программа выведет сообщение с требованием отсоединить кабель между тестовой головой и частотомером (рисунок 11).

Отсоединить кабель, нажать «ОК».

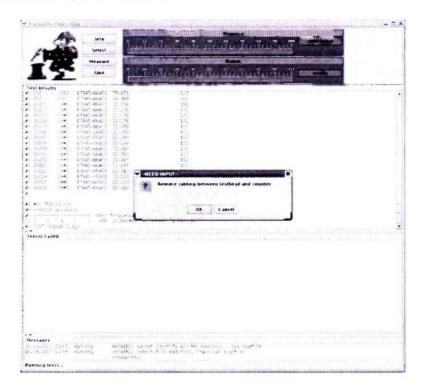


Рисунок 11 – Окно программы после проведения измерений опорной частоты

Результаты измерений автоматически заносятся программой в файл var/opt/hp93000/soc/tracecal/TC_COMMON/result.1 (таблица под заголовком MSC TCA 11 CLK crystal accuracy).

7.5.1.6 Рассчитать абсолютную погрешность частоты опорного сигнала по формуле (1):

$$\Delta F = 10 \text{ M}\Gamma \text{u} - F_{\text{u}_{3M}} \tag{1}$$

7.5.1.7 Результаты поверки считать положительными, если значения абсолютной погрешности установки частоты находятся в пределах $\pm 150~\Gamma$ ц.

7.5.2 Определение абсолютной погрешности опорных напряжений постоянного тока.

- 7.5.2.1 Измерение опорных напряжений постоянного тока производится в соответствии с программой сразу после отсоединения кабеля между тестовой головой и частотомером и последующего нажатия кнопки «**OK**» (п.7.5.1).
- 7.5.2.3 Результаты измерений при воспроизведении установкой опорных напряжений заносятся программой в файл /var/opt/HP93000/soc/tracecal/TC COMMON/result.1.
- 7.5.2.4 Результаты поверки считать положительными, если значения абсолютной погрешности воспроизведения опорных напряжений постоянного тока находятся в пределах, указанных в таблицах 6, 7, 8.

Таблица 6

тиолици о			
Значение опорного	Измеренное значение	Абсолютная погреш-	Пределы допускаемой
напряжения каналов	опорного напряжения, В	ность опорного напря-	абсолютной погрешно-
источника питания,	(DPS128BRV 341 REL	жения, В	сти опорного напряже-
В	board reference voltage)		ния, мВ
-5,0			
-2,5			
-1,0			
-0,1			
0			
0,1			
1,0			±1
2,5			
5,0			
7,5]
10,0			
11,5			
12,5			1
15,0			

Таблица 7

Значение опорного напряжения платы тактовой частоты, В	Измеренное значение опорного напряжения, В (SYS SRV 11 CLK refer-	Абсолютная погрешность опорного напряжения, В	Пределы допускаемой абсолютной погрешности опорного напряже-	
-5,0	ence voltage)		ния, мВ ±0,5	
0,0			±0,5	
5,0			±0,6	
7,5			±0,75	

Таблица 8

Значение опорного	Изме	еренное знач	ение	Абсолютная по-	Пределы допускаемой
напряжения каналь-	опорного напряжения, В (IOREF)		грешность опор-	абсолютной погрешно-	
ных плат, В	IOBRV board reference voltage)		ного напряжения,	сти опорного напряже-	
	101 пла-	109 пла-	117 пла-	В	ния, мкВ
	та CHBD	та CHBD	та CHBD		
-2,0					±600
0,0					±500
2,5					±750
5,0					±1500
6,5					±1950

7.5.3 Определение абсолютной погрешности опорных сопротивлений высокоточных измерителей

7.5.3.1 Измерения опорных сопротивлений производятся программой при отсоединенном от тестовой головы частотомере и последующего нажатия кнопки «ОК» (п.7.5.1).

7.5.3.2 Результаты измерений занести программой в файл /var/opt/HP93000/soc/tracecal/ TC_COMMON/result.1.

В процессе выполнения измерений в правом верхнем углу окна программы отображается полное требуемое время, и время, оставшееся до конца измерений.

Если после проведенных измерений на экране появится сообщение об ошибках, необходимо просмотреть файл ошибок и принять меры к их устранению (для облегчения поиска все обнаруженные ошибки помечаются вопросительным знаком «?»).

В случае успешно пройденных измерений в окне программы появится окно с сообщением «Traceable Calibration successfully finished», в соответствии с рисунком 12

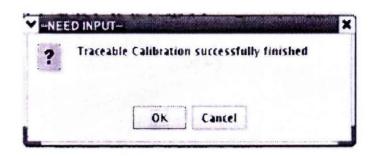


Рисунок 12 – Диалоговое окно

В этом окне нажмите **ОК**. Для того чтобы закрыть программу нажмите **Quit.**

7.5.3.3 Результаты поверки считать положительными, если значения абсолютной погрешности опорных сопротивлений и воспроизведения силы постоянного тока высокоточными измерителями находятся в пределах, указанных в таблицах 9,10, 11.

Таблица 9

Значение опорно-	Измеренное значение	Абсолютная погреш-	Пределы допускаемой
го сопротивления	опорного сопротивле-	ность опорного сопро-	абсолютной погрешно-
каналов источни-	ния, Ом (DPS128	тивления, Ом	сти опорного сопротив-
ка питания, Ом	DPS128BRR)		ления, Ом
$26,1\cdot10^3$			±13,05
$52,2\cdot10^3$			±26,1
$2,61 \cdot 10^3$			±1,3
$5,22 \cdot 10^3$			±2,6
281			±0,14
562			±0,28
33,27			±16,6·10 ⁻³
66,53			±33,3·10 ⁻³
9,4			$\pm 4.7 \cdot 10^{-3}$
2,35			±1,18·10 ⁻³
522·10 ³			±261,0
261·10 ³			±130,5

Таблица 10

Значение опорно- го сопротивления платы тактовой	Измеренное значение опорного сопротивле- ния, Ом (SYS SRR 11	Абсолютная погреш- ность опорного сопро- тивления, Ом	Пределы допускаемой абсолютной погрешно- сти опорного сопротив-
частоты, Ом	CLK)		ления, Ом
$360 \cdot 10^3$			±288
$20 \cdot 10^3$			±10
800			±0,64
10			±5·10 ⁻³

Таблица 11

Значение опорного сопротивления	Измеренное значение опорного сопротивления, Ом (IOREF		Абсолютная по- грешность опорно-	Пределы допускае- мой абсолютной по-	
канальных плат,		IOBRR board reference resistor)		го сопротивления,	грешности опорного
Ом	101 CHBD	109 CHBD	117 CHBD	Ом	сопротивления, Ом
38,3					±38,3·10 ⁻³
$3,83 \cdot 10^3$					±1,9
$39 \cdot 10^3$					±19,5
$375 \cdot 10^3$					±187,5
$1,5\cdot 10^6$					±750

7.5.4 Проведение процедуры автокалибровки

7.5.4.1 Установка калибровочного робота на тестовую голову.

Общий вид и обозначение кнопок управления пульта дистанционного управления приведено на рисунке 13. Функциональное назначение кнопок управления приведено в таблице 12. Перевести устройство жесткой стыковки тестовой головы в позицию «UN DOCK». Для этого нажать на пульте дистанционного управления на кнопку «HARD UNDOCK» (6).

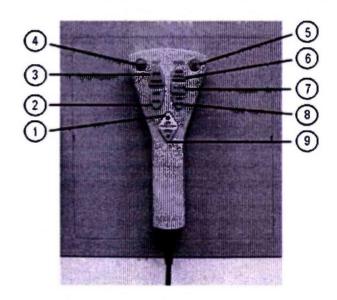


Рисунок 13- Пульт дистанционного управления

Таблица 12

Номер кнопки	Обозначе- ние кнопки	Наименование кнопки	Функция кнопки
1	UP	Кнопка поднятия тестовой головы	Не используется в данном тестере
2	DUT DOCK	Кнопка подключения платы пользователя к измерительному блоку	При использования блокирует кноп- ки HARD UNDOCK, UP, DOWN

3	DUT UN- DOCK	Кнопка отключения платы пользователя от измерительного блока	Для использования одновременно нажать на ENABLE и DUT UNDOCK
4	ENABLE	Кнопка блокировки защиты от случайного нажатия	-
5	OVERRIDE	Кнопка корректировки по- ложения тестовой головы	Не используется в данном тестере
6	HARD UN- DOCK	Кнопка отсоединения тестовой головы	-
7	HARD NEUTRAL	Кнопка предотвращает ме- ханическое напряжение в соединении тестовой головы и присоединённого устрой- ства	-
8	HARD DOCK	Кнопка фиксации тестовой головы и присоединённого устройства	При использовании блокирует кноп- ки UP и DOWN
9	DOWN	Кнопка опускания тестовой головы	-

7.5.4.2 Подкатить калибровочный робот к измерительному блоку установки. Выровнять калибровочный робот параллельно лицевой стороне измерительного блока как показано на рисунке 14. Убедиться, что сторона с двумя направляющими штырями для стыковки установлена по направлению к двум цилиндрам на тестовой голове. Оставить небольшой промежуток между калибровочным роботом и измерительным блоком. Включить тормоза на колесах транспортной тележки.

Рисунок 14 - Установка калибровочного робота рядом с измерительным блоком

7.5.4.3 Отсоединить устройство позиционирования от транспортной тележки. Для этого вытянуть два стопорных штифта, расположенных с обоих концов калибровочного робота, и повернуть их на 90° как показано на рисунке 15.

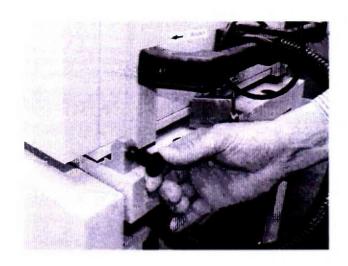


Рисунок 15 - Стопорные штифты.

7.5.4.4 Поднять устройство позиционирования и повернуть его как показано на рисунке 16. Соблюдать осторожность для того, чтобы не перекрутить гибкую трубку, соединяющую устройство позиционирования и транспортировочную тележку.

Рисунок 16 - Снятие устройства позиционирования с транспортной тележки

7.5.4.5 Осторожно установить устройство позиционирования на тестовую голову, так чтобы все направляющие штыри жесткой стыковки вошли в цилиндры, установленные в тестовой голове (рисунок 17). Убедиться, что лицевая часть устройства позиционирования установлена параллельно поверхности пользовательского интерфейса тестовой головы.

Рисунок 17 - Установка устройства позиционирования на тестовой голове

7.5.4.6 Перевести устройство жесткой стыковки тестовой головы в позицию «HARD DOCK». Для этого нажать на пульте дистанционного управления на кнопку «HARD NEUTRAL» (7), затем нажать на кнопку «HARD DOCK» (8). Общий вид и обозначение кнопок управления пульта дистанционного управления приведено на рисунке 13.

7.5.4.7 Подсоединить соединительный кабель к гнезду «CALIBRATION ROBOT» тестовой головы, в соответствии с рисунками 18 (кабель между калибровочным роботом и тестовой головой) и 19 (разъем «CALIBRATION ROBOT» тестовой головы).

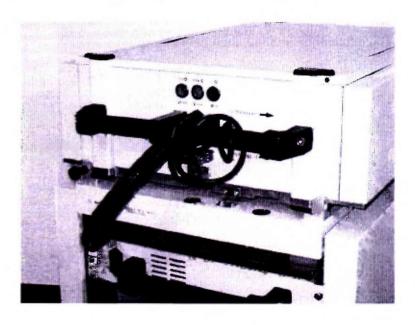


Рисунок 18 - Кабель между калибровочным роботом и тестовой головой.

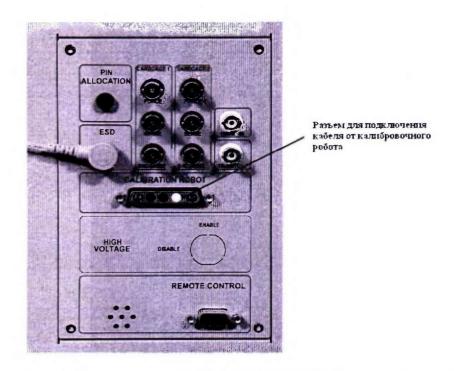


Рисунок 19 - Разъем «CALIBRATION ROBOT» тестовой головы

7.5.4.8 Подсоединить сетевой кабель к розетке на калибровочном роботе с одной стороны и сетевой розетке в тестовой голове с другой (рисунок 20).

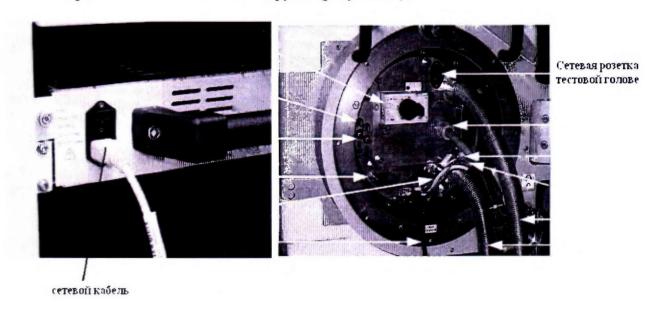


Рисунок 20 - Розетка для сетевого кабеля в калибровочном роботе

7.5.4.9 Запустить системное ПО «SmarTest», для чего набрать в командной строке /opt/hp93000/soc/prod env/bin/HPSmarTest.

На панели инструментов «SmarTest» кликнуть на пункт главного меню «93000 Setup». В открывшемся меню выбрать строку «System», затем выбрать пункт «Calibration» (рисунок 21).

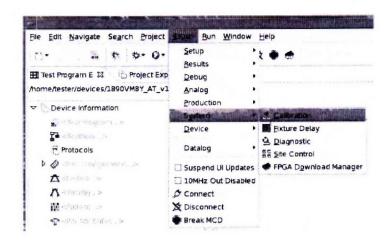


Рисунок 21 - Окно программы

7.5.4.10 Для запуска программы автокалибровки в меню «Tools» окна «Tester Maintenance» выбрать строку «Calibration» (рисунок 22).

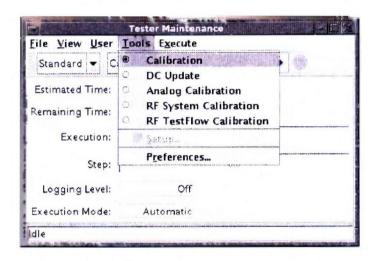


Рисунок 22 - Окно «Tester Maintenance»

7.5.4.11 В окне «Tester Maintenance» в меню «Execute» выбрать пункт «Run» (рисунок 23).

Рисунок 23 -Окно «Tester Maintenance»

7.5.4.12 В окне «Select Calibration Туре» выбрать первый пункт («for maintenance calibration») и нажать на кнопку «Continue» (рисунок 24). Вид окна «Tester Maintenance» в процессе прохождения автокалибровки представлен на рисунке 25.



Рисунок 24 - Окно «Select Calibration Type»

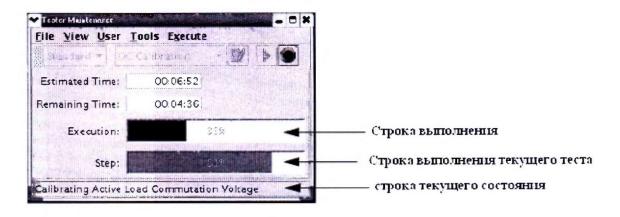


Рисунок 25 - Окно «Tester Maintenance» в процессе прохождения автокалибровки

7.5.4.13 Если автокалибровка проведена успешно и параметры установки соответствуют спецификациям, установка выведет диалог с надписью «Calibration passed» (рисунок 26).

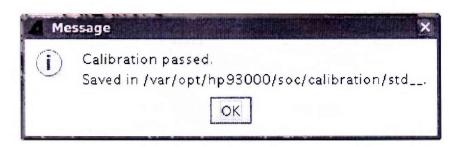


Рисунок 26 – Диалоговое окно

Калибровочные данные автоматически сохраняются в файл /var/opt/hp93000/soc/calibration/std__, который замещает файл предыдущей автокалибровки.

Если автоалибровка прошла с ошибками, или была прервана, появится окно представленное на рисунке 27.

Рисунок 27 – Окно информации, появляющееся в случае, если автокалибровка прошла с ошибками, или была прервана

Данные автокалибровки сохраняются в файл, указанный в появившемся окне. В имени файла отражены дата и время окончание неудачной автокалибровки. В этом случае актуальным остается файл предыдущей автокалибровки.

- 7.5.4.14 Процедуру автокалибровки считать успешно завершенной, если в окне программы появилось сообщение, представленное на рисунке 26.
- 7.5.4.15 Результаты поверки считать положительными, если процедура автокалибровки завершилась успешно, в противном случае установка бракуется.

7.5.5 Проведение процедуры завершающей диагностики

7.5.5.1 Произвести штатную встроенную процедуру диагностики установки для оценки ее исправности в соответствии с порядком, описанным в разделе 9 руководства по эксплуатации установки. Результаты диагностики сохраняются в файл:

/var/opt/hp93000/soc/diagnostic/di_report_file_yyyy.mm.dd.XXhXXmXXs

В имени файла указаны дата и время его создания.

7.5.5.2 Результаты поверки считать положительными, если в результате диагностики не выявлены ошибки в противном случае, установка бракуется.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки установки выдается свидетельство установленной формы.
 - 8.2 На оборотной стороне свидетельства о поверке записываются результаты поверки.
- 8.3 При проведение поверки отдельных измерительных каналов, которые используются при эксплуатации, на оборотной стороне свидетельства о поверке указываются поверяемые каналы и записываются результаты их поверки.
- 8.4 В случае отрицательных результатов поверки поверяемая установка к дальнейшему применению не допускается. На неё выдается извещение об её непригодности к дальнейшей эксплуатации с указанием причин.
- 8.5 Знак поверки наноситься на свидетельства о поверке в виде наклейки или оттиска поверительного клейма.

Me u -

Начальник НИО-6 ФГУП «ВНИИФТРИ»

Начальник лаборатории 620 ФГУП «ВНИИФТРИ» В.И. Добровольский

Н.В Нечаев